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Q1

Q2

Q3

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

Find the slope of the tangent line of the curve that is intersecting of the surface
z=x" -y and the plane x =2, at the point (2,1.,3).
(3 marks)

Given formula i :% . From experiment, we obtained ¥ =250 volt and R =500hm.

(i) Find the maximum error in calculating i if the error of value voltage,V is 1
volt and resistance, R is 0.5 ohm.

(i)  Find the maximum percentage of error in calculating the 7 if the maximum
possible error of value voltage, V and resistance, R is 2% and 1%,

respectively.
(12 marks)

Find the local extremum of the function f(x,y)=xy* —6x* =3y”.
(10 marks)

By using double integrals, find the volume of the solid enclosed by planes y = Jx
and z =1 - x, in the first octant.

(5 mark)
2 Ja—y? J16-x2-)*
(1) By changing to cylindrical coordinates, evaluate j- j Izdzdxdy
0 0 0

(ii) By using spherical coordinates, find the volume of the solid bounded above

by sphere x>+ y* + z*> = z and below by cone z=+/x* +y’.
(12 marks)

A lamina which has density function p(x, y)=y occupies the region bounded by
y=e*, y=0, x=0and x=1. Find:
(1) its mass by using formula, m = ”p(x, y)dA.

R

(ii) its coordinate } of its center of mass.
(8 marks)

X+ye

Compute the curl of the vector field F(x,y,z)=e™"i+sinyj +cos’ zk.

(3 marks)

Use Green’s Theorem to evaluate the line integral 4,(352 — y)dx + x’dy where C is

the boundary of the region between x* + y* =1 and x* + y* =4 oriented

counterclockwise.
(10 marks)
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Q4

(©)

(a)

(b)

(©)

Given the force field F(x, y,z)=yi+(x+2y)j

(i) Show that F is a conservative force field.
(3 mark)

(ii) Find a potential function ¢ such that F=V¢.
(5 marks)

(iii)  Hence, evaluate the work done by the force field F on a particle that moves
along the curve C, where C is the upper semicircle that starts from (0, 1) to

(1, 0).

(4 marks)
State the Divergence Theorem and Stokes’ Theorem.

(4 marks)
If o is the surface of sphere x> + y* +z° =4 and F(x,y,z)=7xi—zk:
(i) Find the divergence of F.

(3 marks)
(ii) Use Gauss’s Theorem to evaluate ”F.ndS

(8 marks)

Use the Stokes’ Theorem to find the work performed by the force field
F(x,y,z)=¢€’i+e"sin yj+e” cos yk
on a particle that oriented upward around the plane z = »* in the domain of 0 <x <4
and 0 <y <2.
(10 marks)

- END OF QUESTION -
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FINAL EXAMINATION
SEMESTER/SESSION: SEM 11/2015/2016 PROGRAMME : BEV, BEJ
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MATHEMATICS III

Second Derivative Test for Extreme of two variable functions

G 3) = Furx )y () =y o)

Casel: If G(a,b)>0and f,,(x,y) <0 then f has local maximum at (a, b)
Case2: If G(a,b)>0and f,.(x,y)>0 then f has local minimum at (a, b)
Case3: If G(a,b) <0 then f has a saddle point at (a,b)

Cased: If G(a,b) =0 then no conclusion can be made.

Polar coordinate
x=rcosf, y=rsin6, 6=tan '(y/x),and [[ f(x,y)dA =[] f(r.0) rdrdd
R R

Cylindrical coordinate
x=rcosf, y=rsinf, z=z and mf(x,y,z)dV = [[[(.0.2)r dz drdo
G G

Spherical coordinate
x=psingcosh, y=psingsing, z=pcos,then x*+y" +2° = p’, for 0<0<2r,

0<p<mand [[[ f(x. . 2)dV = [[[ f(p.$.0)p sing dpdpdO
G G

A= {jdA

m = [[S(x, y)dA, where 8(x,y) is a density of lamina
R

V= [[f(x.y)dd
=[] ar

m= j.“é'(x, v, z)dV
G
Formulas for curve in space

Let C is a smooth curve given by r(f) = x(¢) i+ y(t)j+ z(t) k, ¢ is parameter, then

Arc length of C in the interval [a, b], s = j:J[;'(t)] O]+ [z 0] de = j" )|

CONFIDENTIAL



CONFIDENTIAL BWM20403

FINAL EXAMINATION
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MATHEMATICS III

FORMULAS
If /is a differentiable function of x, y and z, then the

Gradient of £, grad f(x, . 2)=Vf (x, 5. 2) = Li+ L j+ L
ox Oy 0Oz
Directional derivatives of fin the direction of a unit vector u, D,/ (x,y, z)=Vf(x,y,z)-u

If F(x,y,z)=Mi+N j+ Pk is a vector field, then the

6M ON aP
Ox ay 62

i j k

Curl of F(x, y, z), curlF:VxF:i o 9f_[|ok_0oN i— or oM j+ AN k
ox Oy O
M N P

Divergence of F(x, y,z), divF=V.-F=—

ox Oy

F is conservative vector field if Curl of F = 0.

Line Integral

[ feeyzyds=[ £ e, 0,200 )

[Fid=["< M.N, P> <x(1),y\0).2'0) > dr

Green’s Theorem oriented counterclock-wise
E[l Mdx+Ndy ”(@—Q‘KJ dA

Surface Integral
et S be a surface with equation z = g(x, y) and let R be its projection on the xy-plane.

JJ/eyads=[] 10y 80 y)>\/ H[%) [S;) A

”F nds = ”F {——l———_]%—k}dfl oriented upward

”F nds = J.J.F |:+— +—_] k} dA, oriented downward

Gauss’s Theorem Stokes’ Theorem
[[Fonas=|[[v-Far [[(VxF)-ndS=[F-dr
S G S C

5
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