

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME

: SUPERCONDUCTOR

COURSE CODE : BWC 40203

PROGRAMME

: 4 BWC

EXAMINATION DATE : DECEMBER 2015/JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION

: (A) ANSWER ALL QUESTIONS

IN SECTION A

(B) ANSWER ONE (1)

QUESTION IN SECTION B

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

SECTION A

- Q1 (a) Each term given below refers to some superconductors concepts and properties. Distinguish between each pair of terms by reffering to their definitions.
 - (i) Superconductors and superconductivity;
 - (ii) Critical temperature and crirical current density;

(8 marks)

(b) Using specific Maxwell's equation, show that a cooled superconductor (superconducting in zero magnetic field) does not behave like ideal conductors. (**Hint**: $\chi = -1$: perfect diamagnetism)

(6 marks)

(c) Explain the different between superconductors and normal conductor using appropriate diagram

(6 marks)

- Q2 (a) Give a brief description that best fit each of the following terms and difinitions.
 - (i) Perfect conductor
 - (ii) Perfect diamagnetism

(4 marks)

(b) Describe the phenomena of Meissner effect using appropriate diagram.

(8 marks)

(c) Sketch the magnetization versus external magnetic field for a Type I and a Type II superconductor. Compare the different between Type I and Type II superconductors.

(8 marks)

Q3 (a) Analyse coherence length using suitable diagram.

(6 marks)

- Sketch the I-V diagram for AC and DC Josephson effect. Briefly discuss the (b) different between AC and DC Josephson effect.
 - (8 marks)

(c) Plot the *I-V* diagram for NIN, NIS and SIS.

(6 marks)

- Differentiate the theory introduced by "London" and "Ginzburg-Landau". **Q4** (a) (4 marks)
 - (b) Explain the "BCS" theory and include appropriate diagram in your explanation. (6 marks)
 - Compare the specific heat, c_v in a normal conductor at low temperature by (c) considering the electron from conduction band and the lattice. (6 marks)
 - Sketch the specific heat, c_v versus temperature, T for a metal in normal and (d) superconducting state at zero magnetic field. (4 marks)

SECTION B

Q5 (a) Sketch the inverse of magnetic susceptibility $(1/\chi)$ versus temperatre (T) for ferromagnetic, paramagnetic and antiferromagnetic behaviour in the same diagram. Write the three equations that governs them all.

(10 marks)

- (b) Briefly explain the following application:
 - (i) Magnets for magnetic resonance imaging, MRI
 - (ii) Magnets for magnetically levitated trains, MAGLEV

(10 marks)

Q6 Select a suitable technique to prepare the high temperature superconductor (HTSC) of YBa₂Cu₃O₇ (YBCO) and constuct a flow chart based on the preparation technique used.

(20 marks)

- END OF QUESTION -