

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2015/2016**

COURSE NAME : ORDINARY DIFFERENTIAL EQUATIONS

COURSE CODE : BWA 20303

PROGRAMME : 2 BWA

EXAMINATION DATE : DECEMBER 2015/JANUARY 2016

DURATION : 3 HOURS

INSTRUCTION : ANSWER ALL FIVE (5) QUESTIONS

THIS OUESTION PAPER CONSISTS OF SIX (6) PAGES

Q1 Given

$$y'' = -y$$
 with $y(0) = 1$ and $y'(0) = 0$.

By assuming $y = \sum_{n=0}^{\infty} c_m x^m$, show that the differential equation above can be (a) expressed as

$$\sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} + c_n] x^n = 0.$$

(6 marks)

(b) Show that the recurrence relation is given by

$$c_{n+2} = -\frac{c_n}{(n+1)(n+2)}, \quad n = 0, 1, 2, 3, \dots$$

(2 marks)

- Deduce the coefficient of series c_n , for n = 0, 1, 2, 3, ... in terms of c_0 and c_1 . (c) (6 marks)
- Verify that the solution of the differential equation is (d)

$$y(x) = \cos x$$
.

(6 marks)

Q2 Given the system of first order differential equations

$$y'_1 = 4y_1 + 2y_2,$$

 $y'_2 = 3y_1 + 3y_2.$

(a) Write the equation in matrix form Y' = AY where A is the coefficient matrix.

(2 marks)

(b) Show that the eigenvalues are $\lambda_1 = 6$ and $\lambda_2 = 1$.

(5 marks)

Find the corresponding eigenvectors of the eigenvalues found in Q2(b). (c) (6 marks)

- Determine whether the corresponding eigenvectors are linearly independent or not. (d) (4 marks)
- (e) Verify that the general solution is given by

$$y(x) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{6x} + C_2 \begin{pmatrix} 1 \\ -1.5 \end{pmatrix} e^{x}$$
.

(3 marks)

Q3 (a) I have a cheese burger and a mug of hot Nescafe for my lunch break. The Nescafe is at $190^{\circ}F$. The room temperature is $70^{\circ}F$. At time t = 0, the Nescafe is cooling at $15^{\circ}F$ per minute

Newton's law of cooling states that the rate at which the temperature, T(t) changes in a cooling body is proportional to the difference between the temperature of the body and the constant temperature, T_0 of the surrounding medium.

(i) Model the equation of the cooling Nescafe.

(4 marks)

(ii) Determine the time for the temperature to reach $143^{\circ}F$.

(6 marks)

(a) A spring is stretched 0.49 m ($\Delta \ell$) when a 6 kg mass (m) is attached. The weight is then pulled down an additional 0.8 m and released with an upward velocity of 10 ms⁻¹. Neglect the damping constant, c. If the general equation describing the spring-mass system is

$$m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + ky = 0,$$

construct an equation for the position of the spring at any time t.

(Hints: Weight,
$$W = mg$$
, $k = \frac{W}{\Delta \ell}$, $g \approx 9.8 \,\text{ms}^{-2}$)

(10 marks)

Q4 (a) Find the general solution for the second order differential equation by the variation of parameters method.

$$y'' - 3y' + 2y = \frac{e^x}{1 + e^x}$$

(10 marks)

(Hint:
$$\frac{1}{1+e^x} = \frac{e^{-x}}{1+e^{-x}}$$
, $\frac{1}{e^x(1+e^x)} = \frac{1}{e^x} - \frac{1}{1+e^{-x}}$)

(b) Consider the function

$$f(t) = \begin{cases} t - 2 & , & 0 \le t < 4 \\ 2 & , & 4 \le t < 6 \\ 0 & , & t \ge 6 \end{cases}$$

- (i) Sketch the graph of f(t).
- (ii) Write the function f(t) in the form of unit step function.
- (iii) Find the Laplace transform of f(t).

(10 marks)

- Q5 (a) Find
 - (i) $L^{-1}\left\{\frac{1}{s^2+s-2}\right\}$,

(4 marks)

(ii) $L^{-1}\left\{\frac{2}{s(s+2)(s-1)}\right\}$.

(4 marks)

(b) By using Laplace transform, solve

$$x' = -x + y,$$

$$y'=2x$$
,

subject to x(0) = 0, y(0) = 1.

(12 marks)

END OF QUESTION –

FINAL EXAMINATION

SEMESTER / SESSION: SEM 1 / 2015/2016

COURSE: 2 BWA

SUBJECT: ORDINARY DIFFERENTIAL

CODE : BWA 20303

EQUATIONS

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0 or $a\ddot{y} + b\dot{y} + cy = 0$ or $a\frac{d^2y}{dr^2} + b\frac{dy}{dr} + cy = 0$.

	0.00				
Characteristic equation: $am^2 + bm + c = 0$.					
Case	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$			

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})$
Ceax	$x^r(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}$
$\int_{B(x)} \cos \beta x$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x +$
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})\sin \beta x$
$C_{\alpha}^{\alpha x} \int \cos \beta x$	$x^r e^{\alpha x} (P\cos\beta x + Q\sin\beta x)$
$Ce^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	
$P_n(x)e^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x +$
$\int_{0}^{T_{n}(x)^{c}} \sin \beta x$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})e^{\alpha x}\sin\beta x$

Note: r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = y_c + y_p$$
, and $y_p = uy_1 + vy_2$,
where $u = -\int \frac{y_2 f(x)}{aW} dx$, $v = \int \frac{y_1 f(x)}{aW} dx$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$.

FINAL EXAMINATION

SEMESTER / SESSION: SEM 1 / 2015/2016

COURSE : 2 BWA

SUBJECT: ORDINARY DIFFERENTIAL

EQUATIONS

CODE : BWA 20303

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}		
cosat	$\frac{s}{s^2+a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$		
cosh at	$\frac{s}{s^2-a^2}$	<i>y</i> (<i>t</i>)	Y(s)		
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)		
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$				

Representation of Functions in Power Series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$