

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME

: NUMERICAL ANALYSIS II

COURSE CODE

BWA 30403

PROGRAMME

3BWA

:

:

EXAMINATION DATE

DECEMBER 2015 / JANUARY 2016

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS IN

PART A AND TWO (2)
QUESTIONS IN PART B.

2. ALL CALCULATIONS AND ANSWERS MUST BE IN THREE

(3) DECIMAL PLACES.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL PART A

Q1 (a) Solve the boundary value problem of

$$e^{x}y'' + xy' - 5(1+x)y = x^{3}, \quad 0 \le x \le 2,$$

with the following boundary conditions y(0) = 2, y(2) = 5 at x = 0(1.0)2 by using shooting method, initially using fourth order Runge Kutta method.

(15 marks)

(b) Solve $\frac{d^2y}{dx^2} + y = 0$ using fourth order Runge-Kutta method for x = 0.2 and x = 0.4 correct to three decimal places. Initial conditions are x = 0, y = 1, and y' = 0.

Q2

1 2 3
$$x_1 = 1$$
 $x_2 = 2$ $x_3 = 3$

Figure Q2

Consider a fin of length 5 unit that has three nodes and two elements, as shown in **Figure Q2**. The heat flow equation is

$$\frac{d}{dx}\left(A(x)k(x)\frac{dT(x)}{dx}\right) + Q(x) = 0, \text{ for } 0 \le x \le 3,$$

with A(x) is the cross-sectional area, k(x) is the thermal conductivity, T(x) is the temperature at length x and Q(x) is the heat supply per unit time and per unit length.

Find the temperature at each nodal points T_2 , T_3 and $-\left(k\frac{dT}{dx}\right)_{att=1}$, if A(x) is 10

units, k(x) is 5 units and Q(x) is 50 units. Let the temperature at x = 0 is 0 unit and the heat flux $-\left(k\frac{dT}{dx}\right)_{att=3}$ is 20 units.

(25 marks)

CONFIDENTIAL PART B

Q3 (a) Given the boundary value problem

$$y'' + xy' - 2y + x = 0$$
, $0 \le x \le 1$,

with the boundary conditions y'(0) = 1 and 2y'(1) - y(1) = 3. Derive the system of linear equations in matrix-vector form by finite difference method (**DO NOT SOLVE THE SYSTEM**). Use $\Delta x = h = 0.2$.

(10 marks)

(b) Derive the implicit finite difference Crank-Nicolson formula.

(5 marks)

(c) Given the heat equation

$$u_t = \frac{1}{9}u_{xx}, \quad 0 < x < 1, \ t > 0,$$

with conditions u(0,t)=1, u(1,t)=1 and $u(x,0)=\cos 2\pi x$. By using explicit finite-difference method, find the approximate solution to the heat equation for x=0 to x=1 and $t \le 0.01$. Take $\Delta x = 0.25$ and $\Delta t = 0.01$.

(10 marks)

Q4 (a) Fin the volume of the solid, V under the surface $z = 3x^3 + 3x^2y$ over the rectangle $R = \{(x, y) : 0 \le x \le 3, 0 \le y \le 2\}$, using 2-point Gaussian quadrature.

(10 marks)

(b) Define Fourier and Fast Fourier Transform

(3 marks)

(c) Given that the wave equation $u_n = 4u_{xx}$, 0 < x < 1, 0 < t < 0.5, with the boundary conditions u(0,t) = u(1,t) = 0, $0 \le t \le 0.5$ and initial conditions

$$u(x,0) = \begin{cases} \frac{5x}{2} & \text{for } 0 \le x < 5\frac{3}{5}, \\ \frac{15 - 15x}{4} & \text{for } \frac{3}{5} \le x \le 1 \end{cases}$$

and $u_t(x,0) = 0$ for $0 \le x \le 1$. By taking $h = \Delta x = 0.2$ and $k = \Delta t = 0.1$, solve for u using finite difference method.

(12 marks)

CONFIDENTIAL

Q5 (a) State and prove Lax Equivalence Theorem for convergent.

(7 marks)

(b) Use finite difference method with Gauss-Seidel iteration method and initial guess, $u^{(0)} = 0$ to approximate the solution to the Poisson equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x, \ 0 < x < 1, \quad 0 < y < 1,$$

with the boundary conditions

$$u(0, y) = 0, u(1, y) = \frac{1}{6}, 0 \le y \le 1,$$

$$u(x,0) = \frac{1}{6}x^3, u(x,1) = \frac{1}{6}x^3, 0 \le x \le 1,$$

with $h = \frac{1}{3}$ and $k = \frac{1}{3}$.

(18 arks)

- END OF QUESTION -

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION: SEM I/ 2015/2016

COURSE :NUMERICAL ANALYSIS II

PROGRAMME: 3BWA

COURSE CODE: BWA 30403

FORMULAS

Gauss-Seidel iteration method:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, i = 1, 2, \dots, n.$$

Numerical integration

$$\frac{1}{3} \text{ Simpson's rule: } \int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f_{0} + f_{n} + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f_{i} + 2 \sum_{\substack{i=2 \ i \text{ even}}}^{n-2} f_{i} \right].$$

 $\frac{3}{8}$ Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{3}{8}h[f_{0} + f_{n} + 3(f_{1} + f_{2} + f_{4} + f_{5} + \dots + f_{n-2} + f_{n-1}) + 2(f_{3} + f_{6} + \dots + f_{n-6} + f_{n-3})]$$

2-point Gauss Quadrature:
$$\int_{-1}^{1} f(x)dx = c_1 f(x_1) + c_2 f(x_2) \approx g\left(-\sqrt{\frac{3}{5}}\right) + g\left(\sqrt{\frac{3}{5}}\right).$$

Ordinary differential equations

Initial - Value Problem:

Fourth-order Runge-Kutta Method

$$y_{i+1} = y_i + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4]$$
 where

$$k_1 = h f(x_i, y_i), \quad k_2 = h f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$$

$$k_3 = h f\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$
 and $k_4 = h f\left(x_i + h, y_i + k_3\right)$,

Boundary value problems:

Finite difference method:

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION: SEM I/ 2015/2016

PROGRAMME: 3BWA

COURSE: NUMERICAL ANALYSIS II

COURSE CODE: BWA 30403

$$y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h},$$

$$y_i'' \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$
.

Partial differential equations

Poisson equation-Finite difference method

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} + \left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = f_{i,j}$$

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} + \left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = f_{i,j} \qquad \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = f_{,i}$$

Finite element method

$$KT = F_b - F_t$$

where $K_{ij} = \int_{p}^{q} A(x)k(x)\frac{dN_i}{dx}\frac{dN_j}{dx}dx$ is stiffness matrix,

$$T = T_i$$
,

$$F_b = \left[N_i A(x) k(x) \frac{dT}{dx} \right]_p^q,$$

$$F_{l} = -\int_{p}^{q} N_{i}Q(x)dx.$$