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Q1 (a)  Ineach of the following find the probability density function of Y. Show that
integrates to 1.

(i)  Y=X7and fi(x)=15x"(1-x), 0 <x <1,

(4 marks)
()  Y=4X+1and fi(x) = %e?* 0 <x <o
(4 marks)
(b) Let 6 be a fixed positive constant, and define the function f{x) by
1 5 .
> e " if x=0
f) =49
5989" if x<0
(1) Verify that f{x) is a probability density function.

(4 marks)

(i) If X is a random variable with pdf given by f(x), find P(X < ¢) for all .
Evaluate all integrals.

(7 marks)
(ii1) Find P(|X] <t) for all #. Evaluate all integrals.
(6 marks)
Q2  Let Xj, ..., Xy be independent and identically distributed random variables with
probability density function
fx(xly) = 3yx?e™? x>0,7>0.

(a) Find sufficient statistics for y and state the result that you are using.

(3 marks)
(b) Derive the score statistic, U(X).

(3 marks)
(©) Derive the maximum likelihood estimator, ¥, of .

(3 marks)



Q3

(d)

(©)

6

€]

(a)

(b)

(©
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Drive Fisher information for vy.
(3 marks)

Provide the maximum likelihood estimator, g (X), of %
(4 marks)

Show that , g (X) is unbiased estimator of )l/ that attains the Cramer-Rao Lower

Bound.
(5 marks)

Find Var[ g (X)]. ( ©
4 marks

Let X1, ..., X, be independent Uniform random variables with probability density
function

1

t <ux; <
flxle) =g 0=x<?0

0 otherwise

(1) State the likelihood function f(x |6).
(3 marks)

(ii1)  State Neyman’s Factorisation Theorem.
(2 marks)

Let X7, X5, ..., X, random variables from N(x, 02). Suppose that ¢ is known, so

that 4 is the parameter, and consider the random variable T,(x) = % Then
Vn

Th(u) depends on the X’s only through the sufficient statistic X of x and its

distribution is M0, 1) for all 4. Construct (1-0)100% confidence interval of 1 and
2

a.
(14 marks)
State
(1) type I and type II error.
(2 marks)



Q4

(a)

(b)
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(ii) critical region or rejection region.
(2 marks)

(111)  the power function
(2 marks)

For a random sample X}, X5, ..., X,, of Bernoulli (p) variables, it is desired to test

Hy: p=0.49 versus H;: p=0.51.

Use the Central Limit Theorem to determine, approximately, the sample size
needed so that the two probabilities of error are both about 0.01. Use a test
function that reject Hy if Y.j-, X; is large [20.01=2.33].

(10 marks)

Let X}, X, ..., X,, be iid N4, 0-2), where 0 is a specified value of 8 and o is
unknown. We are interested in testing

Hy: =0, versus H: 0+ 6,.

(1) Show that the test that rejects Hywhen

_ S2
|X— 90] > tn—l,a/z ?

(i1) Show that the test in part b(i) can be derived as an Likelihood Ratio Test.
(10 marks)

1s a test of size a.
(5 marks)

- END OF QUESTION -



