

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME

ENGINEERING MATHEMATICS II E

COURSE CODE

BWM 10303 / BSM1933

PROGRAMME

1BEB/C/D/E/H/L/U, 2BEC/D/H/U,

3BEB/C/H, 4BEE

EXAMINATION DATE

JUNE 2013

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

FROM SIX (6) QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

BWM10303 / BSM1933

- Q1 Given y'' xy = 0.
 - (a) By assuming $y = \sum_{m=0}^{\infty} c_m x^m$, show that the differential equation v'' xv = 0 can be expressed as

$$\sum_{m=2}^{\infty} m(m-1) c_m x^{m-2} - x \left(\sum_{m=0}^{\infty} c_m x^m \right) = 0.$$
 (4 marks)

(b) Hence, by shifting the indices, show that the reccurance relation is given by

$$c_{n+2} = \frac{c_{n-1}}{(n+2)(n+1)}, \quad n=1, 2, 3, ...$$

(8 marks)

(c) Then, deduce the coefficient of series for c_n , n = 0, 1, 2, 3, 4...7 in terms of c_0 and c_1 .

(6 marks)

(d) Hence, show that the general solution of the differential equation is

$$y = c_0 \left[1 + \frac{1}{3 \cdot 2} x^3 + \frac{1}{6 \cdot 5 \cdot 3 \cdot 2} x^6 + \dots \right] + c_1 \left[x + \frac{1}{4 \cdot 3} x^4 + \frac{1}{7 \cdot 6 \cdot 4 \cdot 3} x^7 + \dots \right].$$
 (2 marks)

Q2 (a) Given the following periodic function,

$$f(x) = 2x, -\pi < x < \pi,$$

 $f(x) = f(x + 2\pi).$

- (i) Sketch the periodic function above for the interval $[-3\pi, 3\pi]$.
- (ii) Determine whether the above periodic function is an odd function, even function or neither odd nor even function.
- (iii) Determine the Fourier series expansion to represent the above periodic function.

(11 marks)

- (b) By definition of Fourier transforms, evaluate $\mathcal{F}\left\{-3\delta(t+2)\right\}$. (3 marks)
- (c) By referring to the Fourier transform pair table, evaluate

(i)
$$\mathcal{F}\left\{e^{-3t}H(t)\right\}$$
.
(ii) $\mathcal{F}\left\{e^{-4t}\sin(\pi t)H(t)\right\}$.

(6 marks)

Q3 (a) Obtain the inverse Laplace transform for $F(s) = \frac{4s}{(s-1)(s+1)^2}$.

(7 marks)

(b)

Figure Q3

Show that the governing equation for the circuit in Figure Q3 is given by

$$\frac{di}{dt} + 2i + 5 \int_0^t i \ dt = H(t)$$

where H(t) is the unit step function.

Hence, find the current i(t) if there is no initial stored energy.

(13 marks)

Q4 (a) Evaluate $\mathcal{L}\{(t+t^2+\frac{1}{6}t^3)e^{-t}\}$

(5 marks)

(b) Find the Laplace transform of

$$f(t) = \begin{cases} t, & t < 2 \\ t^2, & t \ge 2 \end{cases}$$

by changing it to unit step function first.

(9 marks)

(c) By using the transform of integral, evaluate

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$$

(6 marks)

The *RLC* circuit in the Figure Q5 consists of a resistor, R, an inductor, L and a capacitor, C connected in series together with a voltage source, $\frac{37}{3}\sin 3t$ V.

- (a) By applying Kirchhoff's Voltage Law, show that the *RLC* circuit can be governed by $\frac{d^2i}{dt^2} + 2\frac{di}{dt} + 10i = 37\cos 3t.$ (4 marks)
- (b) Hence, find the general solution for the differential equation in (a). (12 marks)
- (c) Given that i(0) = 0 and i'(0) = 4, obtain the particular solution for the the differential equation in (a). (4 marks)
- Q6 (a) Solve the following first-order differential equation.

$$(x^2 + 2y)dx + (2x + e^y)dy = 0$$

(8 marks)

(b) Given the non-homogeneous linear system

$$y'_1 = - y_2 + x$$

 $y'_2 = 3y_1 + 4y_2 - 2-4x$

and the general solution of the corresponding homogeneous system is

$$y_C(x) = C_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^x + C_2 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{3x},$$

where C_1 and C_2 are any constants and $y_C(x)$ is complimentary function.

- (i) Find the particular solution, $y_p(x)$ by method of undetermined coefficient.
- (ii) Hence, obtain the general solution and particular solution for the above system. Given that $y_1(0) = 0$, and $y_2(0) = 0$.

(12 marks)

END OF QUESTION

BWM10303 / BSM1933

FINAL EXAMINATION

SEMESTER / SESSION: SEM II 2012/2013

PROGRAMME : 1BEB/C/D/E/H/L/U, 2BEC/D/H/U,

3BEB/C/H, 4BEE

COURSE: ENGINEERING MATHEMATICS IIE COURSE CODE: BWM10303 / BSM1933

FORMULAS

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.					
	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$			

Laplace Transform

f(t)	F(s)	
а	<u>a</u>	
	<u>s</u>	
e^{at}	1	
	s-a	
sin <i>at</i>	<u>a</u>	
	$s^2 + a^2$	
cosat	$\frac{a}{s^2 + a^2}$ $\frac{s}{s^2 + a^2}$	
	$s^2 + a^2$	
sinh <i>at</i>	<u>a</u>	
	s^2-a^2	
cosh at	$ \frac{a}{s^2 - a^2} $ $ \frac{s}{s^2 - a^2} $ $ \underline{n!} $	
	s^2-a^2	
t^n , $n = 1, 2, 3,$	<u>_n!</u>	
, , , ,	s^{n+1}	
$e^{at}f(t)$	F(s-a)	
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$	
	$\frac{(-1)}{ds^n}F(s)$	
H(t-a)	e^{-as}	
	<u> </u>	
f(t-a)H(t-a)	$\frac{s}{e^{-as}F(s)}$	
$\delta(t-a)$	e^{-as}	
$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$	
у	Y(s)	
<i>y' y''</i>	sY(s)-y(0)	
y"	$s^2Y(s) - sy(0) - y'(0)$	

FINAL EXAMINATION

SEMESTER / SESSION: SEM II 2012/2013 PROGRAMME : 1BEB/C/D/E/H/L/U, 2BEC/D/H/U,

3BEB/C/H, 4BEE

COURSE: ENGINEERING MATHEMATICS IIE COURSE CODE: BWM10303 / BSM1933

Fourier Series

Half Range series
$a_0 = \frac{2}{L} \int_0^L f(x) dx$
$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$
$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$
1
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table of Fourier Transform (Fourier Transform Pairs)					
f(t)	$F(\omega)$	f(t)	$F(\omega)$		
$\delta(t)$	1	sgn(t)	$\frac{2}{i\omega}$		
$\delta(t-\omega_0)$	$e^{-i\omega_0\omega}$	H(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$		
1	$2\pi\delta(\omega)$	$e^{-\omega_0 t}H(t)$ for $\omega_0 > 0$	$\frac{1}{\omega_0 + i\omega}$		
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_{_0})$	$t^n e^{-\omega_0 t} H(t)$ for $\omega_0 > 0$	$\frac{n!}{(\omega_0 + i\omega)^{n+1}}$		
$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$e^{-at}\sin(\omega_0 t)H(t)$ for $a>0$	$\frac{\omega_0}{\left(a+i\omega\right)^2+{\omega_0}^2}$		
$\cos(\omega_0 t)$	$\pi \big[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \big]$	$e^{-at}\cos(\omega_0 t)H(t)$ for $a > 0$	$\frac{a+i\omega}{(a+i\omega)^2+{\omega_0}^2}$		
$\sin(\omega_0 t) H(t)$	$\frac{\pi}{2}i[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$				
$\cos(\omega_0 t) H(t) \left[\frac{\pi}{2} \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right] + \frac{i\omega}{\omega_0^2 - \omega^2} \right]$					