

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME

COURSE CODE

- : PHYSICS FOR ENGINEERING TECHNOLOGY
- : BWM 12603
- PROGRAMME : 1 BNN, BNB, BNL
- EXAMINATION DATE : DECEMBER 2012 /
- DURATION
- INSTRUCTION

: ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

JANUARY 2013

: 2½ HOURS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

PART A

S1 a) Define Specific Heat Capacity and Latent Heat Capacity. What are the differences between Specific Heat Capacity and Latent Heat Capacity?

(4 marks)

b) A bag of lead (Plumbum) pellets (specific heat capacity, $c = 128 \text{ J kg}^{-1} \circ C^{-1}$) is dropped from a height of 10 m. Upon impact, 50% of the kinetic energy of the bag is turned into thermal energy dissipated throughout the lead bag. Calculate the change in temperature of the lead.

(6 marks)

- c) How much energy is required to change a 50 g ice cube at -10 °C to steam at 150 °C? (10 marks)
- Q2 a) Define and give examples of :
 - (i) Longitudinal Waves
 - (ii) Electromagnetic Waves

(5 marks)

b) A 0.80 kg mass hangs from a spring. When an additional 0.20 kg mass is added, the spring elongates another 3.0 cm. What is the period of oscillation of the spring?

(6 marks)

- c) A spring is stretched 0.15 m when a mass of 0.35 kg is hung on it as in Figure Q2 (c-i). The spring is then set up horizontally with the 0.35 kg mass resting on a frictionless table as Figure Q2 (c-ii). The spring is compressed 0.15 m from equilibrium and then released from that point.
 - (i) Determine the spring constant k and angular frequency ω of the oscillation.
 - (ii) What is the amplitude of the horizontal oscillation, A?
 - (iii) Find the maximum velocity, v_{max} and maximum acceleration, a_{max} of the oscillation.

(9 marks)

PART B

Q3 a) State the three Newton's Law of Motion.

(5 marks)

- b) Two blocks of mass $m_A = 20$ kg and $m_B = 5$ kg are connected by a massless cable wound around a massless pulley. A force F is applied to block A causing it to slide over a horizontal surface with kinetic coefficient of friction $\mu_{k1} = 0.25$, while block B slides over block A with $\mu_{k2} = 0.15$, as shown in Figure Q3 (b).
 - (i) What force is needed to move block A with constant speed?

(ii) (8 marks)

(iii) If the cable can sustain a maximum tension of 100 N, what is the maximum force F_{max} allowable without breaking the cable?

(7 marks)

Q4 a) A quartz sphere is 8.75 cm in diameter. What will be its change in volume if it is heated from 30 °C to 200 °C? The coefficient of linear expansion of the quartz is $0.4 \times 10^{-6} \text{ K}^{-1}$.

(6 marks)

- b) Two thermally insulated tanks of equal volume $V_1 = V_2 = 1 \text{ m}^3$, are connected by a thermally insulated partition. The two tanks communicate through a valve which initially closed. The two tanks contain two samples of the same ideal and monoatomic gas as shown in **Figure Q4 (b)**.
 - (i) What are the temperatures T_1 and T_2 of the two tanks?
 - (ii) What are the internal energies U_1 and U_2 of the gas in the two tanks? (10 marks)
- c) A steel rod has a length of exactly 20 cm at 30 °C. How much longer is it at 50 °C? [Use α steel = 11 × 10⁻⁶/ °C]

(4 marks)

Q5 a) Distinguish between elastic and plastic behavior of a solid.

(4 marks)

b) A force of 5000 N is applied outwardly to each end of a 5.0 m long rod with a radius of 34.0 cm and a Young's modulus of 125×10^8 N/m². Find the elongation of the rod. (3 marks)

BWM 12603

c) A steel wire is 7.0 m long and has a mass of 100 g. It is under tension of 900 N. What is the speed of transverse wave pulse on this wire?

(3 marks)

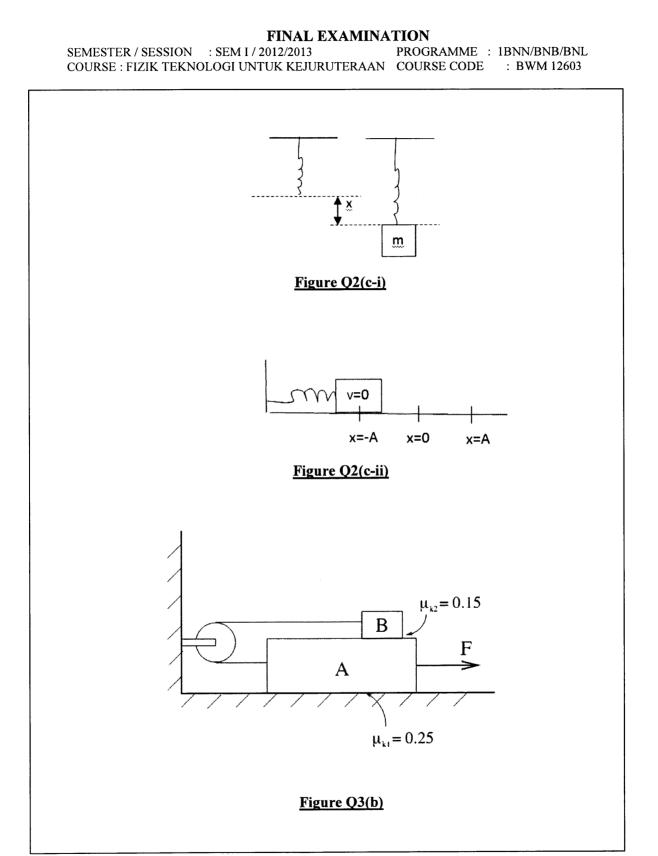
- d) A wave pulse propagates along a wire in the positive x direction at 20 ms⁻¹. What will the pulse velocity be:
 - (i) if we double the length of the wire keeping the tension and the mass per unit length constant?
 - (ii) double the tension while holding the length and mass per unit length constant?
 - (iii) double the mass per unit length while holding the other variables constant?

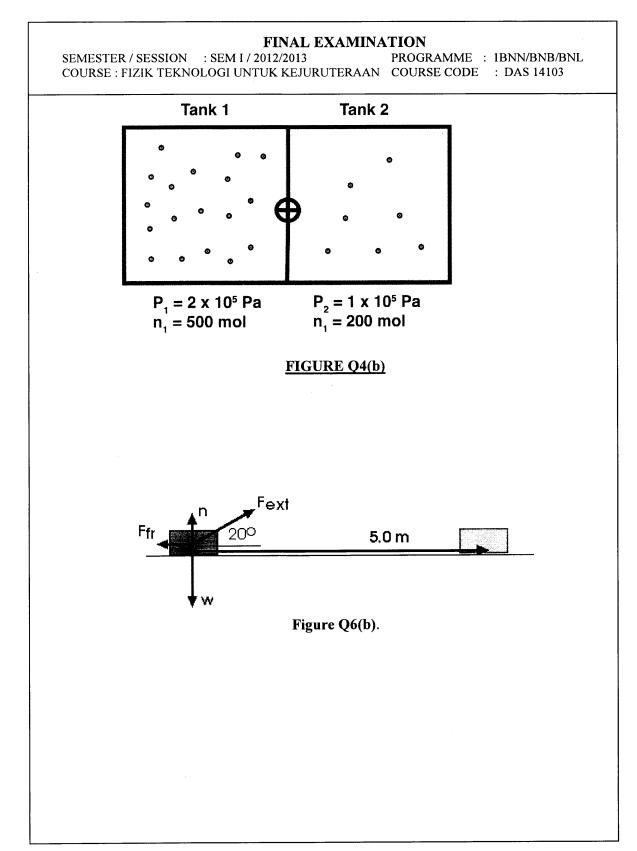
(10 Marks)

Q6 a) Define what is work and power. State its SI units.

(4 marks)

- b) A 15.0 kg block is dragged over a rough, horizontal surface by a 70.0 N force acting at 20° above the horizontal. The block is displaced 5.0 m and the coefficient of kinetic friction is 0.30 as shown in **Figure Q6(b)**.
 - (i) Find the work done by the 70.0 N force.
 - (ii) Find the work done by the normal force.
 - (iii) What is the energy loss due to friction?


(6 marks)


- c) A 1500 kg car accelerates uniformly from rest to 10 ms^{-1} in 3.0 s. Find
 - (i) distance in this time interval.
 - (ii) the work done on the car this time interval.
 - (iii) the average power of the car's engine.

Given
$$Distance = \left(\frac{v+v_o}{2}\right)t$$
 (10 marks)

~ END OF QUESTION ~

BWM 12603

BWM 12603

2013 PROGRAMME KEJURUTERAAN COURSE CODE	: 1BNN/BNB/BNL : BWM 12603
1 feet = 12 in 1 feet = 30.48 cm= 0.3048 m 1 mi = 1.609 km	$P = m \cdot v$
c _{water} =4186 J/kg ℃	$L_{v} = 2.26 \times 10^{6} J/kg C$ $L_{f} = 333 \times 10^{3} J/kg C$
$E_{u} = \frac{1}{2}kx^{2} = \frac{1}{2}m\omega^{2}x^{2}$	$s = r\theta$
$E_J = E_k + E_u = \frac{1}{2}m\omega^2 A^2$	$v = r\omega$
$R = \sqrt{R_x^2 + R_y^2}$	$a = r\alpha$
$\theta = \tan^{-1} \left(\frac{R_y}{R_x} \right)$	$\omega = \frac{d\theta}{dt}$
v = u + at	$\alpha = \frac{d\omega}{dt}$
$s = ut + \frac{1}{2}at^2$	$a_c = \frac{v^2}{r} = \omega^2 r$
$v^2 = u^2 + 2as$	$a=r\sqrt{\omega^4+\alpha^2}$
$\sum F = ma$	$\omega = \omega_o + \alpha t$
W = mg	$\theta = \omega_o t + \frac{1}{2}\alpha \cdot t^2$
$f_k = \mu_k N \qquad f_s = \mu_s N$	$\omega^2 = \omega_o^2 + 2\alpha \cdot \Delta\theta$
	$1 \text{ feet } = 30.48 \text{ cm} = 0.3048 \text{ m}$ $1 \text{ mi} = 1.609 \text{ km}$ $c_{water} = 4186 \text{ J/kg} \mathfrak{C}$ $E_{u} = \frac{1}{2} kx^{2} = \frac{1}{2} m \omega^{2} x^{2}$ $E_{J} = E_{k} + E_{u} = \frac{1}{2} m \omega^{2} A^{2}$ $R = \sqrt{R_{x}^{2} + R_{y}^{2}}$ $\theta = \tan^{-1} \left(\frac{R_{y}}{R_{x}}\right)$ $v = u + at$ $s = ut + \frac{1}{2} at^{2}$ $v^{2} = u^{2} + 2as$ $\sum F = ma$ $W = mg$

FORMULA

7

NEWTONIAN MECHANICS

$$v = v_0 + at$$

$$F = fa$$

$$F = fa$$

$$x = x_0 + v_0t + \frac{1}{2}at^2$$

$$f = fa$$

$$h = h$$

$$J = ia$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$K = k$$

$$\sum F = F_{net} = ma$$

$$f = ia$$

$$F_{fric} \le \mu N$$

$$R = m$$

$$F_{fric} \le \mu N$$

$$R = m$$

$$F_{fric} \le \mu N$$

$$R = m$$

$$F = rF \sin \theta$$

$$F = r \cos \theta$$

$$F_s = -kx$$

$$F_s = -kx$$

$$F_s = 2\pi \sqrt{\frac{m}{k}}$$

acceleration $\rho = m/V$ orce $P = P_0 + \rho g h$ requency neight $F_{buoy} = \rho V g$ mpulse cinetic energy $A_1v_1 = A_2v_2$ pring constant ength nass $P + \rho gy + \frac{1}{2}\rho$ normal force ower $\Delta \ell = \alpha \ell_0 \Delta T$ nomentum adius or distance beriod $H = \frac{kA\Delta T}{L}$ ime otential energy $P = \frac{F}{A}$ elocity or speed work done on a system PV = nRT =position coefficient of friction $K_{avg} = \frac{3}{2}k_B T$ ingle orque $v_{rms} = \sqrt{\frac{3RT}{M}}$ $W = -P\Delta V$ $\Delta U = Q + W$ $e = \left| \frac{W}{Q_H} \right|$

FLUID MECHANICS AND THERMAL PHYSICS

$\rho = m/V$	A = area
	e = efficiency
$P = P_0 + \rho g h$	F = force
	h = depth
$F_{buoy} = \rho V g$	H = rate of heat transfer
4u = 4u	k = thermal conductivity
$A_1 v_1 = A_2 v_2$	K_{avg} = average molecular
1 2	kinetic energy
$P + \rho g y + \frac{1}{2} \rho v^2 = \text{ const.}$	$\ell = \text{length}$
-	L = thickness
$\Delta \ell = \alpha \ell_0 \Delta T$	m = mass
	M = molar mass
$H = \frac{kA\Delta T}{I}$	n = number of moles
L	N = number of molecules
F	P = pressure
$P = \frac{F}{A}$	Q = heat transferred to a
	system
$PV = nRT = Nk_BT$	T = temperature
-	U = internal energy
$K_{avg} = \frac{3}{2}k_BT$	V = volume
- 2	v = velocity or speed
$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$	v_{rms} = root-mean-square
$\sigma_{rms} = \sqrt{M} = \sqrt{\mu}$	velocity
	W = work done on a system
$W = -P\Delta V$	y = height
$\Delta U = Q + W$	α = coefficient of linear
-	expansion
$e = \left \frac{W}{Q_{tt}} \right $	μ = mass of molecule
$ Q_H $	ρ = density
$e_c = \frac{T_H - T_C}{T_H}$	