CONFIDENTIAL

UNTVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTERI **SESSION 2011/2012**

THIS EXAMINATION PAPER CONSISTS OF SEVEN (7) PAGES

PART A

 ~ 100

 $Q1$ (a) Consider the heat conduction equation

$$
\frac{\partial}{\partial t}T(x,t)=\alpha\frac{\partial^2}{\partial x^2}T(x,t), \quad 00,
$$

where α is thermal diffusity = 10, since $\alpha = c^2$.

Given the boundary conditions,

$$
T(0,t) = 0, \quad T(10,t) = 100
$$

and initial condition.

$$
T(x,0)=x^2.
$$

By using explicit finite-difference method, find $T(x,0.055)$ and $T(x,0.11)$ with 5 grid intervals on the x coordinate.

(10 marks)

(b) Let $y(x,t)$ denotes displacement of a vibrating string. If T is the tension in the string, ω is the weight per unit length, and g is acceleration due to gravity, then ν satisfies the equation

$$
\frac{\partial^2 y}{\partial t^2} = \frac{Tg}{\omega} \frac{\partial^2 y}{\partial x^2}, \quad 0 < x < 2 \,, \ t > 0 \,.
$$

Suppose a particular string is 2 m long and is fixed at both ends. By taking $T = 1.5$ N, $\omega = 0.01$ kg/m and $g = 10$ m/s², use the finite-difference method to solve for y up to level 2 only. The initial conditions are

$$
y(x,0) = \begin{cases} \frac{x}{2}, & 0 \le x \le 1 \\ \frac{2-x}{2}, & 1 \le x \le 2 \end{cases}
$$
 and $\frac{\partial y}{\partial t}(x,0) = x(x-2).$

Performed all calculations with $\Delta x = 0.5$ m and $\Delta t = 0.01$ s.

(15 marks)

Q2 The steady state temperature distribution of heated rod follows the one-dimensional form of Poisson's equation

$$
\frac{d^2T}{dx^2} + Q(x) = 0.
$$

Solve the above equation for a 6 cm rod with boundary conditions of $T(0,t) = 10$ and $T(6, t) = 50$ and a uniform heat source $Q(x) = 40$ with 3 equal-size elements of length by using finite-element method with linear approximation.

(25 marks)

PART B

- **Q3** (a) Given $f(x) = 7e^{-x} \sin x 1$ for $-1 \le x \le 1$.
	- (i) Find the root of $f(x)$ by using Secant method (iterate until $|f(x_i)| < \varepsilon = 0.005$).
(ii) If the exact solution of $f(x)$ is 0.118, find the absolute error.
	-

(8 marks)

- (b) A mixture company has three sizes of packs of nuts. The Large size contains 2 kg of walnuts,2 kg of peanuts and I kg of cashews. The Mammoth size contains 3 kg of walnuts, 6 kg of peanuts and 2 kg of cashews. The *Giant* size contains 1 kg of walnuts, 4 kg of peanuts and 2 kg of cashews. Suppose that the company receives an order for 14 kg of walnuts, 26 kg of peanuts and 12 kg of cashews.
	- (i) By taking a , b and c represent *Large*, *Mammoth* and *Giant* size, obtain the system of linear equations for this company.
	- (ii) By using Gauss elimination method, determine how can this company fill this order with the given sizes of packs.
	- (iii) Suppose that the mixture company above is planning to expand their mixing productions. Their planning can be summarized as Table Q3(b) below:

Table Q3(b)

If the company receives a new order for 13 kg of walnuts, 34 kg of peanuts, 15 kg of cashews and 28 kg of Almond, determine the possible solutions of the system by using Gauss-Seidel iteration method.

(17 marks)

\sim	$\overline{}$	ັ the contract of the contract of \sim \sim \sim
	x	y(x)
		-100
	20	280
	40	1460
	60	3440
	80	6220

Q4 (a) ^Acertain lab experiment produced the following data (Table Q4(a)):

Table Q4(a)

Predict $y(x)$, when $x = 70$ by using

- (i) Lagrange polynomial interpolation and

(ii) Newton divided-difference interpolation.
-

(16 marks)

(b) Evaluate $\int_0^1 e^{x^2} \sin x \, dx$ by using 3-point Gauss Quadrature.

(9 marks)

$$
Q5 \qquad (a) \qquad \text{Given the matrix}
$$

 \sqrt{s}

 $\frac{1}{2}$.

$$
A = \begin{pmatrix} 3 & 4 & 1 \\ 4 & 3 & 0 \\ 1 & 4 & 3 \end{pmatrix}
$$

- (i) By using the power method, compute the dominant eigenvalue, λ_{Largest} of A and its corresponding eigenvector v_1 .
- (ii) Then, find smallest eigenvalue, $\lambda_{\text{Smallest}}$ of A by using the shifted power method.

For those both calculations, use initial eigenvector, $v^{(0)} = (1 \ 1 \ 1)^T$ and stop the iteration when $|m_{k+1} - m_k| < \varepsilon = 0.005$.

(8 marks)

(b) (i) The differential equation

 $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$.

$$
\frac{dp}{dt}=rb(1-p), \quad p(0)=p_0,
$$

is a model for studying the proportion, $p(t)$ of nonconformist in a society. The birth rate is b and the rate at which offspring would become nonconformist when at least one of their parents was a conformist is r . If $p(0) = 0.01$, $b = 0.02$ and $r = 0.1$, approximate $p(3)$ by using secondorder Taylor series method and modified Euler's method. Assume that $h = \Delta t = 1$ year.

(ii) Solve the following boundary value problem

$$
y'' + 4y' + 4y = e^{-t}, \ \ y(0) = 0, \ y(1) = 0.
$$

Consider $h = \Delta t = 0.25$.

(17 marks)

FINAL EXAMINATION

SEMESTER/SESSION: SEM V 2011/2012 PROGRAMME : 1/2/3/4 BDD/BEE/BFF COURSE : ENGINEERING MATHEMATICS IV CODE : BWM 30603/BSM 3913

FORMULAS

Nonlinear equations

Secant method :
$$
x_{i+2} = \frac{x_i f(x_{i+1}) - x_{i+1} f(x_i)}{f(x_{i+1}) - f(x_i)}
$$

System of linear equations

Gauss-Seidel iteration method:

$$
x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, i = 1, 2, ..., n
$$

Interpolation

Lagrange polynomial: $P_n(x) = \sum_{i=1}^{n} L_i(x) f(x_i), i = 0,1,2,...,n$ where $L_i(x) = \prod_{i=1}^{n} \frac{(x - x_i)^i}{(x - x_i)^i}$ $\sum_{i=0}^{n} L_i(x) f(x_i), i = 0, 1, 2, ..., n$ where $L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)$

Newton divided difference:

 $P_n(x) = f_0^{[0]} + f_0^{[1]}(x-x_0) + f_0^{[2]}(x-x_0)(x-x_1) + ... + f_0^{[n]}(x-x_0)(x-x_1)...(x-x_{n-1})$

Numerical differentiation and integration

Integration:

Gauss quadrature:

For
$$
\int_{a}^{b} f(x)dx
$$
, $x = \frac{(b-a)t + (b+a)}{2}$
3-points: $\int_{-1}^{1} f(x)dx \approx \frac{5}{9}g\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}g(0) + \frac{5}{9}g\left(\sqrt{\frac{3}{5}}\right)$

Eigenvalue

Power Method: $v^{(k+1)} = \frac{1}{m_{k+1}} Av^{(k)}$, $k = 0, 1, 2, ...$

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2011/2012 PROGRAMME : 1/2/3/4 BDD/BEE/BFF COURSE: ENGINEERING MATHEMATICS IV CODE : BWM 30603/BSM 3913

Ordinary differential equations

Initial value problems:

 $\ddot{}$

Modified Euler's method: $y_{i+1} = y_i + \frac{1}{2}k_1 + \frac{1}{2}k_2$

where
$$
k_1 = hf(x_i, y_i)
$$
, $k_2 = hf(x_i + h, y_i + k_1)$

Second order Taylor series method: $y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2!}y''(x_i)$

Boundarv value problems:

Finite difference method:

$$
y'_i \approx \frac{y_{i+1} - y_{i-1}}{2h}
$$
, $y''_i \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$

Partial differential equation

Heat Equation: Finite difference method

$$
\left(\frac{\partial u}{\partial t}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j}
$$
\n
$$
\frac{u_{i,j+1} - u_{i,j}}{k} = c^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}
$$

Wave equation: Finite difference method

$$
\left(\frac{\partial^2 u}{\partial t^2}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j}
$$
\n
$$
\frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}
$$

Finite element method

$$
KT = F_b - F_l,
$$

where $K_{ij} = A_{ij} = \int_p^q a \frac{dN_i}{dx} \frac{dN_j}{dx} dx$ is stiffness matrix,
 $T = T_i$, $F_b = \left[N_i a \frac{dT}{dx} \right]_p^q$, $F_l = \int_p^q N_i f(x) dx$