

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 1 SESSION 2011/2012

COURSE	•	BASIC ENGINEERING SCIENCE
CODE	:	BWM 21702
PROGRAMME	:	2 BPC / 4 BPC
DATE	•	JANUARY 2012
DURATION	:	2 HOURS 30 MINUTES
INSTRUCTION	:	ANSWER ALL FIVE (5) QUESTIONS.

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

Q1 (a) An object is pulled on a horizontal plane with a force, F of 10 N along x axis. Given the acceleration, a of the object is 1.5 ms⁻² and friction coefficient, μ between the object and the plane is 0.55, what is the mass, m of the object.

(4 marks)

- (b) Figure Q1(b) shows a force act on m_2 is 40 N (F = 40 N) and friction coefficient, μ between m_2 and the plane is 0.76,
 - (i) Draw Free Body Diagram (FBD) for each object $(m_1 \text{ and } m_2)$ in the system.
 - (ii) Find the acceleration, a and tension, T of the string in the system.

(16 marks)

Q2 (a) A concrete block is pulled 7.0 m across a frictionless surface by a rope. The tension in the rope is 40 N and the net work done on the block is 247 J. What angle does the rope make with the horizontal.

(4 marks)

- (b) A car with a mass of 1000 kg moves from rest to reach a speed of 20 m/s. Calculate,
 - (i) the initial kinetic energy, K_i .
 - (ii) the final kinetic energy, $K_{\rm f}$.
 - (iii) the work done, W by the car.

(9 marks)

(c) A car with a mass, *m* of 1200 kg can accelerate from rest to a speed, *v* of 25 ms^{-1} at 8.0 s. What is the average power, *P* must the car produce to cause this acceleration. Give the answer in horse power. Given 1hp = 746W and ignore friction losses.

(7 marks)

Q3 (b) Define the Archimedes' Principle.

(3 marks)

(b) The system shown in **Figure Q3(b)** has a mass, *m* of 600 kg at cylinder A with a cross sectional area, *A* of 800 cm². The piston, B has a cross sectional area, *A* of 25 cm² and negligible weight. If the system is filled with an oil ($\rho = 0.78$ g/cm³), find the force, *F* required to hold both the cylinder and piston in equilibrium at point H.

(7 marks)

- (c) A wood with an area, A of 0.5 m² and height, h of 3.0 m is floating freely on a lake. Given the density of wood, $\rho_{wood} = 700 \text{ kg/m}^3$, density of water, $\rho_{water} = 1000 \text{ kg/m}^3$ and gravitional acceleration, $g = 9.8 \text{ m/s}^2$, determine,
 - (i) the volume of the wood.
 - (ii) the weight of wood floating on the water.
 - (iii) the buoyancy force.
 - (iv) the volume of water displaced.

(10 marks)

- Q4 (a) A large sponge has forces, F of magnitude 12 N applied in opposite directions of two opposite faces of area, A 42 cm². Given the thickness of the sponge (L) is 2.0 cm and the deformation angle (γ) is 8.0°. Calculate,
 - (i) the displacement of surface, Δx .
 - (ii) the shear stress, σ .
 - (iii) the shear strain, ε .
 - (iv) the shear modulus of the sponge, S.

(12 marks)

(b) The coefficient of linear expansion, α of brass is $1.9 \times 10^{-5} \circ C^{-1}$. At 20.0° C, a hole in a sheet of brass has an area, A of 1.0 mm². Find the increase of the hole area, ΔA at 30.0°C.

(3 marks)

(c) A cylindrical brass container with a base area, A of 75.0 cm² and height, h of 20.0 cm is filled to the brim with water when the system is at 25.0° C. How much water overflows when the temperature of the water and container is raised to 95.0°C. Given $\beta_{water} = 207 \times 10^{-6} \text{ K}^{-1}$ and $\beta_{brass} = 57 \times 10^{-6} \text{ K}^{-1}$.

(5 marks)

BWM 21702

Q5 (a) Define 'specific heat (c)' and 'latern heat (L)'.

(4 marks)

(b) A 200 cm³ of water at 90°C is poured into 150 g glass cup initially at 20°C. What will be the final temperature of the mixture when equilibrium is reached, assuming no heat flows to surroundings. Given $c_{water} = 4.186 \text{ kJ/kgK}$ and $c_{cup} = 0.75 \text{ kJ/kgK}$.

(7 marks)

- (c) A transverse wave with frequency, f of 0.2 Hz and speed, v of 100 m/s is illustrated in **Figure Q6(c)**. Find,
 - (i) the amplitude, A.
 - (ii) the period, T.
 - (iii) the wavelength, λ .
 - (iv) wave number, k.

(9 marks)

Figure Q6(c)

LIST OF CONSTANTS

- Acceleration of gravity, $g = 10 \text{ m/s}^2$ 1.
- Coefficient of linear expansion of steel, $\alpha_{\text{steel}} = 12 \times 10^{-6} \,^{\circ}\text{C}^{-1}$ 2.
- Coefficient of volume expansion of glass, $\gamma_{glass} = 28 \times 10^{-6} \,^{\circ} \text{C}^{-1}$ 3.
- Coefficient of volume expansion of water, $\gamma_{water} = 207 \times 10^{-6} \,^{\circ} \text{C}^{-1}$ 4.
- 5. Specific heats of iron, $c_{\rm iron} = 450 \text{ J/kg.}^{\circ}\text{C}$
- Atmospheric pressure, $P_{atm} = 1.0 \times 10^5$ Pa 6.
- Specific heat of water, $c_{water} = 4.186 \text{ kJkg}^{-1}\text{K}^{-1}$ 7.
- 8.
- Specific heat of ice, $c_{ice} = 2.1 \text{ kJkg}^{-1}\text{K}^{-1}$ Specific heat of steam, $c_{steam} = 2.01 \text{ kJkg}^{-1}\text{K}^{-1}$ 9.
- Latent heat of fusion of water, $L_f = 333.7 \text{ kJ/kg}$ 10.
- Latent heat of evaporation of water, $L_v = 2,256 \text{ kJ/kg}$ 11.
- Coefficient of thermal conduction of asbestos, $\kappa_{asbestos} = 0.17 \text{ Wm}^{-1}\text{K}^{-1}$ 12.
- Coefficient of thermal conduction of copper, $\kappa_{copper} = 401 \text{ Wm}^{-1}\text{K}^{-1}$. 13.
- 14. Density of sea water, $\rho_{sea} = 1030 \text{ kg/m}^3$
- Density of water (fresh water), $\rho_{water} = 1000 \text{ kg/m}^3$ 15.
- Young's modulus of copper, $Y_{\text{copper}} = 120 \times 10^9 \text{ Pa}$ 16.
- Young's modulus of steel, $Y_{\text{steel}} = 200 \times 10^9 \text{ Pa}$ 17.

LIST OF FORMULAS

$\Delta L = \alpha L_0 \Delta T$	$T_{K} = T(K/^{\circ}C) + 273.15K$	$PE_{spring} = \frac{1}{2}kx^2$
$\Delta A = 2\alpha A_0 \Delta T$	R = d/ĸA	$W = Fs \cos \theta$
$\Delta V = \beta V_0 \Delta T$	$Q = \kappa A \varDelta T t / d$	$\Delta U = -W$
$\gamma_{\rm apparent} = \gamma_{\rm absolute} - \gamma_{\rm glass}$	$v=f\lambda=\omega/k=(\tau/\mu)^{1/2}$	$\Delta K = W$
$V_{\text{apparent}} = V_{\text{absolute}} - V_{\text{glass}}$	$\mu = m/L$	P = W/t
$PV = nRT = Nk_BT$	$\omega = 2\pi f$	$\omega^2 = k/m$
N = M/m	f = 1/T	ρ= m/ V
$n = N/N_A$	$k=2\pi/\lambda$	P=F/A= _p gh
$R = N_A k$	f=nv/2L	$P_{absolute} = P_{gauge} + P_{atm}$
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	F = ma	$F_B = \rho g V$
$Q = mc \Delta T$	$F_f = \mu_k N$	$\frac{F}{L} = Y \frac{\Delta L}{L}$
	$F_f = \mu_s N$	
$Q = L_{\rm f} m$	U = mgh	$\frac{F}{A} = S \frac{\Delta x}{L}$
$Q = L_v m$	$K = \frac{1}{2}mv^2$	$\Delta P = -B \frac{\Delta V}{V}$
$T_c = \frac{T_F - 32^{\circ}F}{1.8^{\circ}F/^{\circ}C}$	$W_{\text{spring}} = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2$	