

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2010/2011**

SUBJECT

ENGINEERING MATHEMATICS III •

CODE

BSM 2913 / BMW 20403

COURSE

1BDD / 2 BDD / 3 BDD / BDI / BEE / BEI /

BFF/BFI

DATE

NOVEMBER / DECEMBER 2010

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF 5 PAGES

Q1 (a) Let G be the "ice cream cone" bounded below by $z = \sqrt{3(x^2 + y^2)}$ and above by $x^2 + y^2 + z^2 = 4$. Write an iterated integral which gives the volume of G by using spherical coordinates.

(10 marks)

(b) Find the mass of the solid that lies below the paraboloid $z = 25 - x^2 - y^2$ inside the cylinder $x^2 + y^2 = 4$ above the xy-plane, and has density function $\rho(x, y, z) = x^2 + y^2 + 6z$.

(10 marks)

- Q2 (a) Let $\mathbf{r}(t) = 2\cos t \,\mathbf{i} + 2\sin t \,\mathbf{j} + 3t \,\mathbf{k}$. be a position vector of a particle moving in space.
 - (i) Find its velocity, speed and acceleration at time $t = \pi$.
 - (ii) Find the unit tangent vector $\mathbf{T}(t)$, principal unit normal vector $\mathbf{N}(t)$ and curvature κ .

(12 marks)

(b) Evaluate the surface integral

$$\iint_{\sigma} (x^2 z + y^2 z) \, dS,$$

where σ is the portion of hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

(8 marks)

Q3 (a) Locate all relative maxima, relative minima and saddle point, if any for

$$f(x, y) = 2x^2 - 4xy + y^4 + 2.$$

(12 marks)

(b) Evaluate $\int_C y \, dx + z \, dy + x \, dz$, where C consists of the line segment C_1 from (3,4,5)

followed by the vertical line segment C_2 from (3,4,5) to (3,4,0).

(8 marks)

Q4 (a) Show that the vector field $\mathbf{F}(x,y,z) = 2x(y^2 + z^3)\mathbf{i} + 2yx^2\mathbf{j} + 3x^2z^2e\mathbf{k}$ is conservative. Find its scalar potential function $\phi(x,y,z)$ and work done by the force \mathbf{F} in moving a particle from (-1, 2, 1) to (2, 3, 4).

(10 marks)

(b) Use Green's Theorem to evaluate

$$\oint_C \left(3y - e^{\sin x}\right) dx + \left(7x + \sqrt{y^4 + 1}\right) dy$$

where C is the circle $x^2 + y^2 = 9$ oriented counter clockwise.

(10 marks)

Q5 (a) Use Stoke's Theorem to compute the integral

$$\iint_{\sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

where $\mathbf{F}(x, y, z) = yz\,\mathbf{i} + xz\,\mathbf{j} + xy\,\mathbf{k}$ and σ is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.

(10 marks)

(b) Evaluate

$$\iint_{\sigma} \mathbf{F} \cdot d\mathbf{S}$$

where $\mathbf{F}(x, y, z) = xy\mathbf{i} + (y^2 + e^{xz^2})\mathbf{j} + \sin(xy)\mathbf{k}$ and σ is the surface of the region bounded by the parabolic cylinder $z = 1 - x^2$ and the planes z = 0, y = 0, and y + z = 2.

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2010/2011

COURSE: 1BDD / 2 BDD / 3 BDD / BDI / BEE /

BEI / BFF /BFI

SUBJECT: ENGINEERING MATHEMATICS III

CODE : BSM 2913/BMW 20403

Formulae

Polar coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $x^2 + y^2 = r^2$

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $x^2 + y^2 = r^2$
$$\iint_R f(x, y) dA = \iint_R f(r, \theta) r dr d\theta$$

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ and $x^2 + y^2 = r^2$

Cylindrical coordinates:
$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ and $x^2 + y^2 = r^2$

$$\iiint_G f(x, y, z) \ dV = \iiint_G f(r, \theta, z) \ r \ dz \ dr \ d\theta$$

Spherical coordinates:

$$x = \rho \cos\theta \sin\phi$$
, $y = \rho \sin\theta \sin\phi$, $z = \rho \cos\phi$, $\rho^2 = x^2 + y^2 + z^2$,

$$0 \le \phi \le \pi$$
 and $0 \le \theta \le 2\pi$

$$\iiint_G f(x, y, z) \ dV = \iiint_G f(\rho, \phi, \theta) \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

The directional derivatives, $D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$; The **gradient** of $\phi = \nabla \phi$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is vector field, then

The **divergence** of
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

The **curl** of
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

Let C is smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$.

The unit tangent vector,
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The principal unit normal vector,
$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

Curvature,
$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

Green Theorem:

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss Theorem:

$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint\limits_{G} \nabla \cdot \mathbf{F} \ dV$$

Stokes Theorem:

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

BSM 2913/BMW 20403

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2010/2011

COURSE: 1BDD / 2 BDD / 3 BDD / BDI / BEE /

BEI / BFF /BFI

SUBJECT: ENGINEERING MATHEMATICS III

CODE : BSM 2913/BMW 20403

Arc Length of Plane Curve and Space Curve

For a plane curve, $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ on an interval [a, b], the arc length

$$s = \int_a^b \left\| \mathbf{r}'(t) \right\| dt = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

For a space curve, $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ on an interval [a, b], the arc length

$$s = \int_a^b \left\| \mathbf{r}'(t) \right\| \ dt = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2 + \left[z'(t) \right]^2} \, dt \, .$$