

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION** SEMESTER I **SESSION 2010/2011**

COURSE

: MATHEMATICS III

**CODE** 

: BSM 2223

PROGRAMME : 2 BBV/ 3 BBV

DATE

: NOVEMBER/DECEMBER 2010

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

Q1 (a) The following probabilities are given:

| $P(A_I)$        | = 0.45   | $P(A_2)$             | = 0.35   | $P(A_3)$           | = 0.20     |
|-----------------|----------|----------------------|----------|--------------------|------------|
| $P(H \mid A_1)$ | ) = 0.10 | $P(H \setminus A_2)$ | ) = 0.12 | $P(H \setminus A)$ | (3) = 0.15 |

Find:

(i)  $P(A_I \mid H)$  (2 marks)

(ii)  $P(A_2 \mid H)$  (2 marks)

(b) Particles are a major component of air pollution in many areas. It is of interest to study the size of contaminating particles. Let *X* represent the diameter, in micrometers, of a randomly chosen particle. Assume that in certain area, the probability density function of *X* is inversely proportional to the volume of the particle, that is, assume that

$$f(x) = \begin{cases} cx^3 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

where c is constant.

- (i) Find the value of c so that f(x) is probability density function. (3 marks)
- (ii) Find the mean of the particle diameter. (4 marks)
- (iii) Find the variance of the particle diameter. (4 marks)
- (iv) Find the cumulative distribution function of the particle diameter. (5 marks)
- Q2. (a) The number of message received by computer bulletin board is a Poisson random variable with a mean rate of 8 messages per hour.
  - (i) What is the probability that five messages are received in a given hour?

(3 marks)

(ii) Find the mean and variance number of message received. (2 marks)

(iii) What is the probability that fewer than three messages are received in one and half hour? (3 marks)

| (b) |            | ll volume of canean 12.05 ml a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | - 15. E       |                   |           |                   | nally           | distributed             |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-------------------|-----------|-------------------|-----------------|-------------------------|
|     | (i)        | What is the pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | robabili         | ty that t     | he cans           | contain   | less th           | an 12.          | 00 ml?<br>(3 marks)     |
|     | (ii)       | What is the plant of the plant is the plant | probabil         | lity that     | the ca            | ns cont   | ain bet           | ween            | 12.00 and               |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                   |           |                   |                 | (4 marks)               |
|     | (iii)      | If nine cans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |               |                   |           |                   |                 | ability that            |
|     |            | the average ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ans com          | iain is gi    | reater ti         | IaII 12.0 | 123 IIII ?        |                 | (5 marks)               |
| (a) | of for     | ep in the manur holes. In a ete this step vols.  Find a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sample<br>was 70 | of 25 seconds | clamps<br>s and t | , the a   | verage<br>dard de | time<br>eviatio | needed to<br>on was 10  |
|     | <b>X</b> 2 | complete the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |               |                   |           |                   |                 |                         |
|     | (ii)       | Find a 95% needed to con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |               | erval fo          | or the s  | tandard           | l devi          | (4 marks)<br>ation time |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ar step.      |                   |           |                   |                 | (4 marks)               |
| (b) |            | veights, each la<br>on the same s<br>s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               | 1,550             | 73        |                   |                 |                         |
|     |            | First weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #3<br>#3         | 53            | 88                | 89        | 62                | 39              | 66                      |
|     |            | Second weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıt:              | 23            | 39                | 28        | 52                | 49              |                         |
|     | (i)        | At 5% level from two wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |               | , can yo          | ou conc   | lude th           | at the          | variances               |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                   |           |                   |                 | (6 marks)               |
|     | (ii)       | At 5% level weights are d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | nificanc      | e, can            | you co    | onclude           | that            | the mean                |

Q3

(6 marks)

Q4 Inertial weights (in tons) and fuel economy (in mi/gal) were measured for a sample of seven cars. The results are presented in the **Table Q4**.

Table Q4: The inertial weights and fuel economy

| Weight  | 8.00 | 24.50 | 27.00 | 14.5 | 28.50 | 12.75 | 21.25 |
|---------|------|-------|-------|------|-------|-------|-------|
| Mileage | 7.69 | 4.97  | 4.56  | 6.49 | 4.34  | 6.24  | 4.45  |

(a) Construct a scatterplot of mileage (y) versus weight (x). Verify that a linear model is appropriate.

(2 marks)

(b) Compute the least square line for predicting mileage from weight and interpret your results.

(6 marks)

(c) Predict the mileage for cars with a weight of 15 tons.

(2 marks)

(d) Compute the coefficient of determination and interpret your results.

(3 marks)

(e) Test the  $H_0$ :  $\beta_1 = 0$  versus  $H_1$ :  $\beta \neq 0$  at 5% level of significance.

(7 marks)

Q5 (a) The following data represent the number of defective items for each Month (Refer **Table Q5(a)**).

Table Q5(a): Number of defective items form two machines

| Machine\<br>Week | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| M1               | 42 | 47 | 66 | 70 | 67 | 45 | 56 | 60 | 74 | 47 | 61 | 52 |
| M2               | 41 | 49 | 61 | 68 | 69 | 42 | 56 | 57 | 68 | 47 | 59 | 51 |

| Machine\   | 13 | 14 | 15 | 16 |
|------------|----|----|----|----|
| Week<br>M1 | 57 | 69 | 68 | 49 |
| M2         | 54 | 63 | 72 | 46 |

Test the hypothesis  $H_0$  that there is no difference between machines against the alternative hypothesis,  $H_1$  that machine 1 is better than machine 2 at the 5% level of significance.

(5 marks)

(b) The following data represent the number of minutes that a customer had to wait on 10 visits before being entertained by the customer relationship officer (Refer **Table Q5(b)**).

Table Q5(b): The number of minutes that a ten customer had to wait

| 28 | 22 | 30 | 28 | 29 |
|----|----|----|----|----|
| 25 | 15 | 18 | 24 | 19 |

Use the sign-rank test at the 0.05 level of significance to test the officer claim that the median waiting time is not more than 20 minutes.

(5 marks)

(c) A company wishes to purchase one of 3 different machines, M1, M2 or M3. In an experiment designed whether the performance difference between the machines, three experienced operators each work on the machines for equal times. The number of unit produced by each machines is shown in **Table Q5(c)**.

Table Q5(c): The number of unit produced by each machines

| Machine M1 | 53 | 68 | 64 | 70 | 65 |
|------------|----|----|----|----|----|
| Machine M1 | 48 | 53 | 72 | 63 | 55 |
| Machine M1 | 53 | 42 | 68 | 72 | 77 |

Test the hypothesis that there is no difference between the machines at the 0.05 level of significance.

(10 marks)

#### **FINAL EXAMINATION**

SEMESTER / SESSION: SEM I / 2010/2011

COURSE:

2 BBV/3 BBV

SUBJECT: MATHEMATICS III

CODE:

BSM2223

#### Formulae

Random variables:

$$\sum_{j=-\infty}^{\infty} P(x_j) = 1, \qquad E(X) = \sum_{\forall x} x \cdot P(x), \qquad E(X^2) = \sum_{\forall x} x^2 \cdot P(x), \qquad \int_{-\infty}^{\infty} f(x) \, dx = 1,$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot P(x) \, dx, \qquad E(X^2) = \int_{-\infty}^{\infty} x^2 \cdot P(x) \, dx,$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$
.

Special Probability Distributions:

$$P(x=r)={}^{n}C_{r}\cdot p^{r}\cdot q^{n-r}, r=0,1,...,n, X\sim B(n,p)$$

$$P(X=r) = \frac{e^{-\mu} \cdot \mu^r}{r!}, \ r=0, 1, ..., \infty, \ X \sim P_0(\mu), \ Z = \frac{X-\mu}{\sigma}, \ Z \sim N(0,1),$$

$$X \sim N(\mu, \sigma^2)$$
.

Sampling Distributions:

$$\overline{X} \sim N(\mu, \sigma^2/n), \ Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1), \ T = \frac{\overline{x} - \mu}{s/\sqrt{n}}, \ \overline{X}_1 - \overline{X}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right).$$

Estimations:

$$\begin{split} n = & \left( \frac{Z_{\alpha/2} \cdot \sigma}{E} \right)^2, \left( \bar{x}_{1} - \bar{x}_{2} \right) - Z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{\; 2}}{n_{1}} + \frac{\sigma_{2}^{\; 2}}{n_{2}}} < \mu_{1} - \mu_{2} < \left( \bar{x}_{1} - \bar{x}_{2} \right) + Z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{\; 2}}{n_{1}} + \frac{\sigma_{2}^{\; 2}}{n_{2}}}, \\ & \left( \bar{x}_{1} - \bar{x}_{2} \right) - Z_{\alpha/2} \sqrt{\frac{s_{1}^{\; 2}}{n_{1}} + \frac{s_{2}^{\; 2}}{n_{2}}} < \mu_{1} - \mu_{2} < \left( \bar{x}_{1} - \bar{x}_{2} \right) + Z_{\alpha/2} \sqrt{\frac{s_{1}^{\; 2}}{n_{1}} + \frac{s_{2}^{\; 2}}{n_{2}}}, \\ & \left( \bar{x}_{1} - \bar{x}_{2} \right) - t_{\alpha/2, v} \cdot S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} < \mu_{1} - \mu_{2} < \left( \bar{x}_{1} - \bar{x}_{2} \right) + t_{\alpha/2, v} \cdot S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \end{split}$$

where Pooled estimate of variance,  $S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$  with  $v = n_1 + n_2 - 2$ ,

$$\left(\bar{x}_{1} - \bar{x}_{2}\right) - t_{\alpha/2,\nu} \sqrt{\frac{1}{n} \left(s_{1}^{2} + s_{2}^{2}\right)} < \mu_{1} - \mu_{2} < \left(\bar{x}_{1} - \bar{x}_{2}\right) + t_{\alpha/2,\nu} \sqrt{\frac{1}{n} \left(s_{1}^{2} + s_{2}^{2}\right)} \text{ with } \nu = 2(n-1),$$

$$\left(\bar{x}_{1} - \bar{x}_{2}\right) - t_{\alpha/2,\nu} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} < \mu_{1} - \mu_{2} < \left(\bar{x}_{1} - \bar{x}_{2}\right) + t_{\alpha/2,\nu} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \text{ with }$$

$$v = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}, \qquad \frac{(n-1) \cdot s^{2}}{\chi^{2}_{\alpha/2,\nu}} < \sigma^{2} < \frac{(n-1) \cdot s^{2}}{\chi^{2}_{1-\alpha/2,\nu}} \text{ with } v = n-1,$$

#### **BSM 2223**

### **FINAL EXAMINATION**

SEMESTER / SESSION: SEM I / 2010/2011

COURSE:

2 BBV/3 BBV

SUBJECT: MATHEMATICS III

CODE:

BSM2223

$$\frac{s_1^2}{s_2^2} \cdot \frac{1}{f_{\alpha/2}(v_1, v_2)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \cdot f_{\alpha/2}(v_2, v_1) \text{ with } v_1 = n_1 - 1 \text{ and } v_2 = n_2 - 1.$$

Hypothesis Testing:

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}, T = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{S_{p} \cdot \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \text{ with } v = n_{1} + n_{2} - 2,$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}, T = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{1}{n}(s_{1}^{2} + s_{2}^{2})}}, S_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \cdot ; \quad \chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Simple Linear Regressions:

$$S_{xy} = \sum x_{i} y_{i} - \frac{\sum x_{i} \cdot \sum y_{i}}{n}, S_{xx} = \sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}, S_{yy} = \sum y_{i}^{2} - \frac{\left(\sum y_{i}\right)^{2}}{n}, \bar{x} = \frac{\sum x}{n}, \\ \bar{y} = \frac{\sum y}{n}, \hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}}, \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}, \hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1} x, r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}},$$

$$SSE = S_{yy} - \hat{\beta}_{1} S_{xy}, MSE = \frac{SSE}{n-2}, T = \frac{\hat{\beta}_{1} - \beta_{1}^{*}}{\sqrt{\frac{MSE}{S_{xx}}}} \sim t_{n-2}, T = \frac{\hat{\beta}_{0} - \beta_{0}^{*}}{\sqrt{MSE\left(\frac{1}{n} + \frac{x^{2}}{S_{xx}}\right)}} \sim t_{n-2}.$$

$$w_1 + w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2}; \ u_1 = w_1 - \frac{n_1(n_1 + 1)}{2}; \ u_2 = w_2 - \frac{n_1(n_1 + 1)}{2}$$
$$h = \frac{12}{n(n+1)} \sum_{i=1}^k \frac{r_i^2}{n_i} - 3(n+1); \ r_s = 1 - 6 \sum_{i=1}^k \frac{d_i^2}{n(n^2 - 1)}$$