

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2009/2010

SUBJECT	:	BASIC PHYSICS I
CODE	:	DSF 1983
COURSE	:	1 DFT / 2 DFT
EXAMINATION DATE	:	NOVEMBER 2009
DURATION	:	2 ½ HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS PAPER CONSISTS OF 8 PAGES

PART A

Q1 (a) A bell produces sound energy at a rate of 4.00×10^{-3} W and radiates it uniformly in all directions. What is the intensity of the wave 100.0 m from the bell?

(6 marks)

(b) The decibel level of a jackhammer is 130 dB relative to the threshold of hearing, $I_0 = 1 \times 10^{-12} \text{ Wm}^{-2}$. Determine the sound intensity produced by the jackhammer.

(8 marks)

- (c) An ambulance moved towards the station with a constant velocity of 50 ms^{-1} and releases the siren at 500 Hz. What is the frequency heard by the stationary observer at the station when the ambulance
 - (i) is approaching the observer.
 - (ii) is moving away from the observer.

(Given: the velocity of sound in air is 343 ms^{-1})

(6 marks)

Q2 (a) A ray of light is reflected from two plane mirror surfaces as shown in Figure Q2 (a). What are the correct values of α and β ?

Figure Q2 (a)

(6 marks)

(b) Figure Q2 (b) shows the path of a portion of a ray of light as it passes through three different materials. What can be concluded concerning the refractive indices of these three materials? (Note: The figure is drawn to scale.)

Figure Q2 (b)

(6 marks)

(c) A beam of light in the water makes an angle of incidence as it enters a piece of unknown transparent material as illustrated in Figure Q2 (c). The beam is refracted at an angle of 34.5° in the material. If the refraction index of water, n = 1.33, find the index of refraction of the unknown material.

(8 marks)

Figure Q2 (c)

PART B

Q3

(a) Young's modulus of nylon is 5×10^9 N/m². A force of 5×10^5 N is applied to a 2-m length of nylon of cross sectional area 0.1 m². By what amount does the nylon stretch?

(7 marks)

(b) The brick shown in Figure Q3 (b) is glued to the floor. A 3500-N force is applied to the top surface of the brick as shown. If the brick has a shear modulus of 5.4×10^9 N/m², how far to the right does the top face move relative to the stationary bottom face?

(8 marks)

(c) A plastic box has an initial volume of 2.00 m⁵. It is then submerged below the surface of a liquid and its volume decreases to 1.96 m³. What is the volume strain on the box?

(5 marks)

Q4 (a) The density of iron is 7860 kg/m^3 . What is the mass of an iron sphere with a diameter of 0.50 m?

(6 marks)

(b) The radius of the smaller piston in a hydraulic system is 5.0 cm while its larger piston has a radius of 20.0 cm as illustrated in Figure Q4 (b). Determine the magnitude and the direction of the force on the larger piston, F_2 if a force, $F_1 = 1,000$ N is applied to the smaller piston.

(6 marks)

- (c) A block of a material with a dimension 8 cm x 4 cm x 5 cm is floated in a fluid of density 900 kgm⁻³. After being partly immersed inside the fluid, 1/5 part of the block is floating above the fluid surface as illustrated in Figure Q4 (c). Find
 - (i) buoyant force on the block.
 - (ii) density of the material.

(8 marks)

- Q5 (a) Define the following terms.
 - (i) Specific heat, c.
 - (ii) Latent heat, L.

(4 marks)

(b) What is the minimum amount of energy required to completely melt a 7.25kg lead brick which has a starting temperature of 18.0 °C? The melting point of lead is 328 °C. The specific heat capacity of lead is 128 J/(kg °C) and its latent heat of fusion is 23 200 J/kg.

(8 marks)

DSF 1983

(c) A thin, circular disc is made of lead and has a radius of 0.0350 cm at 20.0 °C. Determine the change in the area of the circle if the temperature is increased to 625.0 °C. The coefficient of linear thermal expansion for lead is 29.0×10^{-6} °C⁻¹.

(8 marks)

Q6 (a) A progressive wave is represented by the following equation.

 $y = 10 \sin 4\pi (40t + x)$

where y and x are measured in centimeter and t in seconds. Determine

- (i) the amplitude, A.
- (ii) the angular frequency, ω .
- (iii) the frequency, f.
- (iv) the wavelength, λ .

(10 marks)

- (b) Standing waves is formed inside a pipe with open end at both side as illustrated in Figure Q6 (b). The length of the pipe is 1.0 m.
 - (i) If the third harmonics series of standing wave is occurred inside the pipe, draw an appropriate diagram of this particular standing wave.
 - (ii) Give a number of the node and antinode should be formed.
 - (iii) What is the distance between the adjacent antinodes and the nodes?
 - (iv) Calculate the wavelength of the pipe, λ .

(10 marks)

Figure Q6 (b)

LIST OF CONSTANTS

- Gravity acceleration, $g = 10 \text{ m/s}^2$ 1.
- Speed of light in air, $c = 3 \times 10^8$ m/s 2.
- Speed of sound, $v_{sound} = 340 \text{ m/s}$ 3.
- Threshold of sound intensity, $I_o = 1 \times 10^{-12} \text{ W/m}^2$ 4.
- 5.
- 6.
- 7.
- Atmospheric pressure, $P_{atm} = 1.0 \times 10^5$ Pa Specific heat of water, $c_{water} = 4186$ Jkg⁻¹K⁻¹ Specific heat of ice, $c_{ice} = 2100$ Jkg⁻¹K⁻¹ Latent heat of fusion of water, $L_f = 333.7 \times 10^3$ J/kg 8.
- Latent heat of vaporization of water, $L_v = 2256 \times 10^3 \text{ J/kg}$ 10.
- Density of seawater, $\rho_{seawater} = 1030 \text{ kg/m}^3$ 11.
- Density of water, $\rho_{water} = 1000 \text{ kg/m}^3$ 12.

LIST OF FORMULAS

$\frac{F}{A} = Y \frac{\Delta L}{L}$	$\frac{F}{A} = S \frac{\Delta x}{L}$	$\frac{F}{A} = -B\frac{\Delta V}{V}$
$T_F = 1.8T_C + 32^\circ F$	$\Delta L = \alpha L_o \Delta T$	$\Delta \mathbf{A} = \beta \mathbf{A}_o \Delta T$
$Q = mc\Delta T$	$Q = mL_f$	$Q = mL_{\nu}$
$\Delta V = \gamma V_o \Delta T$	$\gamma = \gamma_{apparent} + \gamma_{glass}$	$\frac{Q}{t} - \frac{\Delta T}{\sum R_n}$
$\frac{Q}{t} = \kappa A \frac{\Delta T}{d}$	$\Delta P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$	$F = \rho g V$
$P = \frac{F}{A} = \rho g h$	$F_{net} = W - F_B$	$P_{abs} = P_{um} + \rho g h$
$\rho = \frac{m}{V}$	W-mg	$f = \frac{1}{T}$
$\omega = \frac{2\pi}{T}$	$\lambda = \frac{v}{f}$	$k = \frac{2\pi}{\lambda}$
$v = \frac{\omega}{k}$	$y = A\sin(kx - \omega t)$	$l = \frac{P}{A}$

DSF 1983

$\beta = 10\log\left(\frac{I}{I_o}\right)$	$A_{circle} = \pi r^2$	$A_{sphere} = 4 \pi r^2$
$V_{sphere} = \frac{4}{3} \pi r^3$	$v = \sqrt{\frac{T}{\mu}}$	$V_{\text{solid}} = \sqrt{\frac{Y}{\rho}}$
$v_{liquid} = \sqrt{\frac{B}{\rho}}$	$\lambda = \frac{2L}{n}$	$f = \frac{nv}{2L}$
$f_o = f_s \frac{(v \pm v_o)}{(v \mp v_s)}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	