

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2009/2010

SUBJECT	:	ENGINEERING MATHEMATICS II
CODE	:	BSM 1923
COURSE	:	1 BFF / 3 BFF / 4 BFF / 1 BDD / 2 BDD / 3 BDD / 4 BDD
DATE	:	APRIL 2010
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 6 PAGES

PART A

Q2

Q1 A periodic function f(x) is defined by

$$f(x) = \begin{cases} -\sin\left(\frac{\pi x}{2}\right), & -1 < x < 0\\ \sin\left(\frac{\pi x}{2}\right), & 0 < x < 1 \end{cases}$$
$$= f(x+2).$$

(a) Sketch the graph of the function over the interval -3 < x < 3.

(3 marks)

(7 marks)

- (b) Show that $2 \int_0^1 \sin\left(\frac{\pi x}{2}\right) \cos n\pi x \, dx = \frac{1}{\pi} \left[\frac{4}{1-4n^2}\right]$. [Hint: $2 \sin A \cos B = \sin(A+B) + \sin(A-B)$.]
- (c) Show that the Fourier series expansion of f(x) is $f(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos n\pi x}{4n^2 - 1}.$

(7 marks)

(d) Using the value x = 0 in part (b), find the sum of the following series

$$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \dots + \frac{1}{4n^2 - 1} + \dots$$
(3 marks)

(a) Show that the function $u(x,t) = Ae^{2x} \sin(2x+t) - Be^{-2x} \sin(2x-t)$ is a solution of $\frac{\partial^2 u}{\partial x^2} = 8 \frac{\partial u}{\partial t}$, where A and B are constants. (6 marks)

(b) A stretched spring of length l = 10 cm with both ends fixed is set oscillating. The initial state is given by a function, f(x) = 1. The string has been released with initial velocity g(x) = x. By applying the method of separation of variables to the wave equation, $u_{xx} = u_u$, the subsequent displacement of the spring is given by

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{n\pi}{10}\right) t + B_n \sin\left(\frac{n\pi}{10}\right) t \right] \sin\left(\frac{n\pi}{10}\right) x,$$

where A_n and B_n are the Fourier coefficients.

- (i) List the initial and boundary conditions.
- (ii) Find the values of A_n and B_n .

$$\left[\operatorname{Hint}: A_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi}{l}\right) x \, dx, \, B_n = \frac{2}{n\pi c} \int_0^l g(x) \sin\left(\frac{n\pi}{l}\right) x \, dx.\right]$$

(14 marks)

PART B

Q3 (a) Solve the differential equation

$$\frac{dy}{dx} = \frac{y^3}{x(x^2 + y^2)}, \quad y(1) = 1.$$
(10 marks)

(b) The equation of motion is governed by

$$x'' + \frac{a}{M}x' + \frac{k}{M}x = \frac{F(t)}{M}$$

where *M* is a mass and *k* is a spring constant. Suppose that a mass of 2 kg is suspended from a spring with a known spring constant of 4 N/m and allowed to come to rest. It is then set in motion by giving it an initial velocity of 2 m/s. Find the position of the mass at any time if the magnitude of the external force, F(t) = 2t and the air resistance, a = 6.

(10 marks)

Q4 (a) Solve

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = \frac{1}{xe^x}.$$
(11 marks)

(b) The equation of a free fall model is governed by

$$m\frac{dv}{dt} = mg - F_A$$

where *m* is a mass, *g* is the acceleration due to gravity and F_A is an air resistance. Suppose that a 10kg ballast bag is dropped from a hot air balloon which is at an altitude of 342 meter above the ground. If the initial velocity of ballast bag is 5 meter per second and air resistance is given by 2*v*, determine the velocity of the ballast bag. [Take $g = 9.8 \text{ m/s}^2$]

(9 marks)

Q5

(a)

Find the Laplace transforms of

$$f(t) = e^{3t} (e^2 + e^{-5t}) - \cos(\pi - t) + \sinh t \delta(t - \pi).$$
(5 marks)

(b) Show that

$$\mathcal{L}^{-1}\left\{\frac{3}{s^3-3s^2}\right\} = \frac{1}{3}(e^{3t}-1-3t).$$

(6 marks)

(c) Consider the initial value problem

$$y''-3y'=6H(t-4)$$

subject to the conditions y(0) = 0 and y'(0) = 0.

(i) By Laplace transforms, show that

$$\mathcal{L}\{y(t)\} = 2e^{-4s}\left(\frac{3}{s^3 - 3s^2}\right).$$

(ii) Then, determine the solution of the initial value problem by using the result in Q5 (b).

(9 marks)

Q6

(a) Find the Laplace transforms of the following functions:

(i)
$$f(t) = e^{3t} \sin 3t \sin t + t \sin 3t \cos 3t$$
.
(ii) $f(t) = (t-3)(t+5)H(t-3)$.

(12 marks)

(b) Consider the periodic function

$$f(t) = \begin{cases} e^{t}, & 0 \le t < 1\\ 3, & 1 \le t < 2 \end{cases}$$
$$f(t) = f(t+2).$$

(i) Sketch the graph of f(t) for $0 \le t \le 6$.

(ii) Find the Laplace transform of f(t).

(8 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2009/2010

COURSE : 1 BFF / 3 BFF / 4 BFF / 1 BDD / 2 BDD / 3 BDD / 4 BDD

SUBJECT : ENGINEERING MATHEMATICS II

Formulae	

CODE : BSM 1923

Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1x} + Be^{m_2x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Particular Integral of ay'' + by' + cy = f(x) : Method of Undetermined Coefficients

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + \dots + A_1 x + A_0$	$x^r (B_n x^n + \dots + B_1 x + B_0)$
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(p\cos\beta x + q\sin\beta x)$
$P_n(x) e^{\alpha x}$	$x^r (B_n x^n + \dots + B_1 x + B_0) e^{\alpha x}$
$P_n(x) \cdot \begin{cases} \cos\beta x \\ \sin\beta x \end{cases}$	$x^{r} (B_{n}x^{n} + \dots + B_{1}x + B_{0})\cos\beta x +$ $x^{r} (C_{n}x^{n} + \dots + C_{1}x + C_{0}^{n})\sin\beta x$
$Ce^{\alpha x} \cdot \begin{cases} \cos\beta x \\ \sin\beta x \end{cases}$	$x^r e^{\alpha x} (p\cos\beta x + q\sin\beta x)$
$P_n(x)e^{\alpha x} \cdot \begin{cases} \cos\beta x \\ \sin\beta x \end{cases}$	$x^{r} (B_{n}x^{n} + \dots + B_{1}x + B_{0})e^{\alpha x} \cos \beta x +$ $x^{r} (C_{n}x^{n} + \dots + C_{1}x + C_{0})e^{\alpha x} \sin \beta x$

Particular Integral of ay'' + by' + cy = f(x) : Method of Variation of Parameters

Wronskian	Parameter	Solution
$W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$	$u_1 = -\int \frac{y_2 f(x)}{W} dx, u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_p = u_1 y_1 + u_2 y_2$

5

BSM 1923

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2009/2010

COURSE : 1 BFF / 3 BFF / 4 BFF / 1 BDD / 2 BDD / 3 BDD / 4 BDD

SUBJECT : ENGINEERING MATHEMATICS II CODE : BSM 1923

Laplace Transforms					
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}		
sin at	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)		
sinh at	$\frac{a}{s^2-a^2}$	<i>y</i> (<i>t</i>)	Y(s)		
cosh at	$\frac{s}{s^2 - a^2}$	<i>ý</i> (<i>t</i>)	sY(s) - y(0)		
$e^{at}f(t)$	F(s-a)	ÿ(t)	$s^2 Y(s) - s y(0) - \dot{y}(0)$		
$t^n f(t), n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n F(s)}{ds^n}$				

Periodic Function for Laplace transform : $\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt, \quad s > 0.$

Fourier Series

$$a_{0} = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} \left[a_{n} \cos \frac{n\pi x}{L} + b_{n} \sin \frac{n\pi x}{L} \right] \quad \text{where} \quad a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$