

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2009/2010

CODE : DSM 2913

COURSE : 2 DDM / DFA / DFT

:

: NOVEMBER 2009

DURATION : 3 HOURS

INSTRUCTION

DATE

ANSWER ALL QUESTIONS IN **PART A** AND **FOUR (4)** QUESTIONS IN **PART B**

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

PART A

Q1 (a)

Find the Laplace transform of the following functions. (i) $t^4 + \sin \sqrt{2}t$

(i)
$$t^{-t} \cos 2t$$
.

$$f(t) = \begin{cases} 0, & 0 < t < 3, \\ t, & 2 < t < 5, \\ e^{2t}, & t > 5. \end{cases}$$

- (i) Express the function f(t) in the form of the unit step function.
- (ii) Find the Laplace transform of f(t).

(9 marks)

(5 marks)

(c) By using the first shift theorem, find the inverse Laplace transform of $\frac{2s+1}{s^2-2s+10}$.

Q2 Consider the following initial value problem

 $y'' - 2y' + 5y = -8e^{-t}$, y(0) = 2, y'(0) = 12.

(a) Show $Y(s) = \frac{2s}{(s-1)^2 + 4} + \frac{8}{(s-1)^2 + 4} - \frac{8}{(s+1)[(s-1)^2 + 4]}$ by using the method of Laplace transforms. (4 marks)

(b) Use the result in (a) to solve the initial value problem.

(14 marks)

(8 marks)

PART B

Q3 (a) If
$$P = \begin{pmatrix} -1 & 2 & -3 \\ 4 & 1 & 5 \\ 2 & -1 & 6 \end{pmatrix}$$
 and $Q = \begin{pmatrix} -11 & 9 & -13 \\ 14 & 0 & 7 \\ 6 & -3 & 9 \end{pmatrix}$.

(i) Find *PQ* and determine the inverse matrix of *P*.

(ii) Hence, solve the following system of linear equations.

```
-x+2y-3z = 44x+y+5z = -52x-y+6z = -2
```

(9 marks)

(b) Solve the system below by using the Gauss-Jordan elimination method.

$$x + y + z = 7$$
$$2x + 3y - z = 12$$
$$3x + 2y - 4z = 13$$

(6 marks)

Q4 It is given that $\overline{OA} = \mathbf{i} + m\mathbf{j} + 2\mathbf{k}$, $\overline{OB} = -\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $\overline{OC} = 2\mathbf{i} + n\mathbf{j} + 3\mathbf{k}$ is a placement vector for points A, B and C, where O is the origin.

(a) Find the value of *m* and *n* if $\overline{BA} \times \overline{BC} = 7\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$.

(b) Using the value of *m* and *n* from (a), determine the type of angle between vectors \overline{BA} and \overline{BC} .

(2 marks)

(6 marks)

(c) Using the answer in (a) and (b), find $\cos \angle ABC$.

(4 marks)

(d) Find the equation of a plane which passes through points A, B and C. Let $B = B_0$.

(3 marks)

Q5 (a) Given
$$z_1 = -1 + \sqrt{3}i$$
 and $z_2 = -1 - \sqrt{3}i$. Find
(i) $z_1 z_2$.
(ii) $\frac{z_1}{z_2}$.
(iii) $\frac{z_1}{z_2}$.
(iii) $\frac{z_1}{z_2}$.
(4 marks)

(b) Given $z_3 = 2 + 3i$.

- (i) Write z_3 in polar form.
- (i) Find $(z_3)^4$.
- (ii) Find $(z_3)^{4/3}$ and write your answer in a+ib form, in three decimal places.

Q6 (a) Solve the following homogeneous differential equation

$$xy\frac{dy}{dx} = y^2 + x^2 e^{\frac{y}{x}}.$$
(7 marks)

(b) A cup of hot coffee initially at 95°C cools to 80°C in 5 minutes while sitting in a room of temperature 21°C. Determine when the temperature of the coffee will be a nice 50°C?

(8 marks)

Q7 Solve the differential equation

$$y''+2y'+y=e^{-x}\cos x\,,$$

by using the variation of parameters method.

(15 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2009/2010

COURSE : 2 DDM / DFA / DFT

SUBJECT : MATHEMATICS III

CODE : DSM 2913

<u>Formulae</u>

Laplace transform.

$\mathcal{L}{f(t)} = \int_{0}^{\infty} f(t)e^{-st}dt = F(s)$		
f(t)	F(s)	
k	$\frac{k}{s}$	
$t^n, n = 1, 2,$	$\frac{n!}{s^{n+1}}$	
e ^{at}	$\frac{1}{s-a}$	
sin <i>at</i>	$\frac{a}{s^2 + a^2}$	
cos at	$\frac{s}{s^2 + a^2}$	
sinh at	$\frac{a}{s^2-a^2}$	
cosh <i>at</i>	$\frac{s}{s^2-a^2}$	
$e^{at}f(t)$	F(s-a)	
$t^n f(t)$, $n = 1, 2,$	$(-1)^n \frac{d^n F(s)}{ds^n}$	
y(t)	Y(s)	
y'(t)	sY(s)-y(0)	
<i>y</i> "(<i>t</i>)	$s^{2}Y(s) - sy(0) - y'(0)$	
f(t-a)H(t-a)	$e^{-as} F(s)$	
$f(t)\delta(t-a)$	$e^{-as} f(a)$	
$\int_{0}^{t} f(\tau) d\tau$	$\frac{F(s)}{s}$	

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2009/2010

COURSE: 2 DDM / DFA / DFT

SUBJECT : MATHEMATICS III

Differentiation	Integration
$\frac{d}{dx}x^n = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx}\ln x = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$\frac{d}{dx}e^x = e^x$	$\int e^x dx = e^x + C$
$\frac{d}{dx}\sin x = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}\cos x = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}\cot x = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx} \sec x = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}\csc x = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$
$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1} x + C$
$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$

Differentiation And Integration Formula

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2009/2010

COURSE : 2 DDM / DFA / DFT

SUBJECT : MATHEMATICS III

CODE : DSM 2913

Characteristic Equation and General Solution

Differential equation : $ay'' + by' + cy = 0$; Characteristic equation : $am^2 + bm + c = 0$		
Case	Roots of the Characteristic Equation	General Solution
1	real and distinct : $m_1 \neq m_2$	$y = Ae^{m_1x} + Be^{m_2x}$
2	real and equal : $m_1 = m_2 = m$	$y = (A + Bx)e^{mx}$
3	imaginary : $m = \alpha \pm i\beta$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Particular Integral of ay'' + by' + cy = f(x)

f(x)	$y_p(x)$
$P_n(x) = A_0 + A_1 x + \dots + A_n x^n$	$x^r (B_0 + B_1 x + \dots + B_n x^n)$
Ce ^{ax}	$x'(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(p\cos\beta x+q\sin\beta x)$

Note : r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

Variation of Parameters Method for ay'' + by' + cy = f(x)

$$y(x) = uy_1 + vy_2$$

$$u = -\int \frac{y_2 f(x)}{aW} dx + A \qquad \qquad v = \int \frac{y_1 f(x)}{aW} dx + B$$
$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$