

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I SESSION 2009/2010

| SUBJECT     | : | MATHEMATICS I                                                                                 |
|-------------|---|-----------------------------------------------------------------------------------------------|
| CODE        | : | DSM 1913                                                                                      |
| COURSE      | : | 1 DEE / DET / DDM / DDT /<br>1 DFA / DFT                                                      |
| DATE        | : | NOVEMBER 2009                                                                                 |
| DURATION    | : | 3 HOURS                                                                                       |
| INSTRUCTION | : | ANSWER ALL QUESTIONS<br>IN <b>PART A</b> AND <b>THREE (3)</b><br>QUESTIONS IN <b>PART B</b> . |

THIS EXAMINATION PAPER CONSISTS OF 7 PAGES

### PART A

Q1 (a) A study of air pollution in a chemical based industrial area for a year period, gives the amount of sulfur dioxide (mg/L) in the air as in **Table Q1(a)**.

| Sulfur Dioxide (mg/L) | Frequency |
|-----------------------|-----------|
| 5.0-9.0               | 3         |
| 10.0 - 14.0           | 10        |
| 15.0-19.0             | 14        |
| 20.0-24.0             | 25        |
| 25.0-29.0             | 17        |
| 30.0 - 34.0           | 9         |
| 35.0 - 39.0           | 2         |

#### Table Q1(a): Amount of Sulfur Dioxide

From the data in Table Q1(a), determine the

- (i) mean.
- (ii) median.
- (iii) mode.
- (iv) standard deviation.

(13 marks)

(b) A public library employee in a small town reported the number of books borrowed each day over 10 days period as

18 14 12 16 23 14 17 16 20 10

Determine the

- (i) range.
- (ii) mean.
- (iii) standard deviation.
- (iv) variance.

(7 marks)

DSM 1913

Q2 (a) A fair die is thrown. Find the probability that the number obtained is a prime number or less than 5.

(4 marks)

- (b) A box contains a sum of two different colours of tennis balls: 21 green and 17 yellow. Three balls are picked together without looking.
  - (i) Construct a tree diagram to show the event.
  - (ii) Calculate the probability to get at least 2 green tennis balls.

(10 marks)

- (c) The probability of a student arrives on time for mathematics class is P(M) = 0.97 and the probability he/she arrives on time for chemistry class is P(C) = 0.93. The probability for the student arrives on time during mathematics and chemistry class is  $P(M \cap C) = 0.89$ . Determine the probability that the student
  - (i) arrives on time for mathematics class, given that he/she arrives on time for chemistry class.
  - (ii) arrives on time for chemistry class, given that he/she arrives on time for mathematics class.

(6 marks)

PART B

(a)

Solve the given equations. (i)  $5^{2x+1} - 6(5^x) + 1 = 0$ (ii)  $\log_x y + \log_y x = \frac{5}{2}$ xy = 64

(12 marks)

(b) Decompose 
$$\frac{\overline{2x^2 + \overline{7x} + 2}}{x(x-1)^2}$$
 into a partial fraction.

(8 marks)

Q4 (a) Given  $f(x) = 7x^2 + 3x - 27$ . If f(x) = 0, by using secant method, find its root, x, between the interval of [1, 2]. Iterate until  $|f(x_i)| < \varepsilon = 0.001$ .

(10 marks)

(b) (i) By using Binomial series, expand 
$$\left(\frac{1-2x}{1+x}\right)^{\frac{1}{3}}$$
 until the term of  $x^3$ .

(ii) Find  $\frac{1}{\sqrt[3]{4}}$  by substituting  $x = \frac{1}{3}$  in (i).

(10 marks)

Q5 (a) Find 
$$\sec \theta$$
 if  $\tan \theta = \frac{2}{3}$  and  $\theta$  is in quadrant III.  
(4 marks)

(b) Without using calculator, evaluate cos 285°. Simplify your answer in radical form. (6 marks)

(c) Given 
$$f(x) = \frac{(x-1)}{3}$$
 and  $g(x) = \sqrt{x+3}$ , find  
(i)  $(f \circ g)(6)$ .  
(ii)  $(g \circ f)(6)$ .  
(5 marks)

(d) The cost C, in thousand of dollars of producing q kg of a chemical is given by C = f(q) = 100 + 0.2q. Find

(i) 
$$f^{-1}(200)$$
.

(ii) 
$$f^{-1}(C)$$
. (5 marks)

- Q6
- (a) Given the raw data for the height of students (in cm) in one of DSM1913 class as in the **Table Q6(a)**.

| 175 | 178 | 175 | 166 | 166 | 178 | 170 |
|-----|-----|-----|-----|-----|-----|-----|
| 175 | 160 | 163 | 166 | 175 | 170 | 163 |
| 175 | 175 | 163 | 170 | 178 | 166 | 164 |
| 178 | 163 | 176 | 176 | 178 | 166 | 175 |

#### Table Q6(a): Height of Students

(i) Construct a frequency distribution for the ungroup data.

(ii) Determine the mean, mode and median of the data.

(10 marks)

(b) A medical specialist claimed that 70% of H1N1 victims died because of pneumonia and that 25% of the victims suffer "Influenza Light Illness (ILI)". If ILI involved, there is a 55% chance that pneumonia is also involved. Otherwise, the probability is only 12%. If a man who had H1N1 died because of pneumonia, what is the probability that he was also had ILI?

(10 marks)

### FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2009/2010 SUBJECT : MATHEMATICS I COURSE: 1 DEE /DET/DFT/DFA/DDM/DMT SUBJECT CODE: DSM 1913

| Formulae                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Arithmetic Sequences                                                                                                              | Geometric Sequences                                                                                                                                                                                                                                                                                                                                   | <b>Binomial Theorem</b>                                                                                                                                                                               |  |  |
| (i) $u_n = a + (n-1)d$<br>(ii) $d = u_n - u_{n-1}$<br>(iii) $S_n = \frac{n}{2}(a + u_n)$<br>(iv) $S_n = \frac{n}{2}[2a + (n-1)d]$ | (i) $u_n = ar^{n-1}$<br>(ii) $r = \frac{u_n}{u_{n-1}}$<br>(iii) $S_n = \frac{a(1-r^n)}{1-r}$ if $r < 1$<br>(iv) $S_n = \frac{a(r^n - 1)}{r-1}$ if $r > 1$<br>(v) $S_{\infty} = \frac{a}{1-r}$                                                                                                                                                         | For any positive integer $n$<br>$(x + y)^n$<br>$= \binom{n}{0} (x)^n (y)^0 + \binom{n}{1} (x)^{n-1} (y)^1$<br>$+ \dots + \binom{n}{n} (x)^0 (y)^n$<br>where :<br>$\binom{n}{k} = \frac{n!}{k!(n-k)!}$ |  |  |
| Binomial Theorem                                                                                                                  | Statistics                                                                                                                                                                                                                                                                                                                                            | Statistics                                                                                                                                                                                            |  |  |
| $(1+b)^{n} = 1 + nb + \frac{n(n-1)!}{2!}b^{2} + \frac{n(n-1)(n-2)!}{3!}b^{3} + \dots$ $ b  < 1, n \text{ any real number}$        | Ungroup Data :<br>$\overline{x} = \frac{\sum x}{n}$ $\overline{x} = \frac{\sum fx}{\sum f} \text{ (with frequency table)}$ $m = \begin{cases} \frac{X_{n+1}}{2}, & n \text{ odd} \\ \frac{X_n + X_{n+1}}{2}, & n \text{ even} \end{cases}$ $\sigma = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2}$ $\sigma^2 = \frac{\sum x^2}{n} - (\overline{x})^2$ |                                                                                                                                                                                                       |  |  |

| DSM | 1913 |
|-----|------|
|     |      |

| FINAL EXAMINATION                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SEMESTER / SESSION : SEM I / 2009/2010COURSE: 1 DEE /DET/DFT/DFA/DDM/DMSUBJECT : MATHEMATICS ISUBJECT CODE: DSM 1913                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                   | Formulae                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Probability                                                                                                                                                                                                                                                                       | Probability                                                                                                                                                                                   | Trigonometry                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (i) Mutually Not Exclusive<br>$P(A \cup B)$<br>$= P(A) + P(B) - P(A \cap B)$<br>(ii) Mutually Exclusive Events<br>$P(A \cup B) = P(A) + P(B)$<br>(iii) Independent Events<br>$P(A \cap B) = P(A) \times P(B)$<br>(iv) Conditional Events<br>$P(A   B) = \frac{P(A \cap B)}{P(B)}$ | (v) Bayes Theorem<br>For 3 events A, B and C :<br>$P(A   X) = \frac{P(A \cap X)}{P(X)}$ $= \frac{P(A) \times P(X   A)}{\left[ P(A \cap X) + P(B \cap X) + P(B \cap X) + P(C \cap X) \right]}$ | (i) $\sin^2 x + \cos^2 x = 1$<br>(ii) $\tan^2 x + 1 = \sec^2 x$<br>(iii) $1 + \cot^2 x = \csc^2 x$<br>(iv) $\frac{\sin(\alpha \pm \beta)}{= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta}$<br>(v) $\frac{\cos(\alpha \pm \beta)}{= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta}$<br>(vi) $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$ |  |