

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2009/2010

SUBJECT	:	MATHEMATICS I
CODE	:	BSM 1223
COURSE	:	1 BBV
DATE	:	NOVEMBER 2009
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN PART A AND THREE (3) QUESTIONS IN PART B

THIS EXAMINATION PAPER CONSISTS OF 5 PAGES

BSM 1223

PART A

- Q1 (a) The point (3, 4) lies on a circle whose center is at (-1, 2).
 - (i) Determine the radius of the circle.
 - (ii) Find the standard form of the equation of the circle.
 - (iii) Sketch the graph.

(7 marks)

(b) Find the vertex, focus and the directrix of the parabola $2x - 3y^2 + 9y + 5 = 0$. (13 marks)

Q2 (a) Given the vectors $\mathbf{u} = \langle 2, -1, 3 \rangle$, $\mathbf{v} = \langle -4, 0, -2 \rangle$ and $\mathbf{w} = \langle -1, 1, 3 \rangle$. Find

- (i) $\mathbf{w} \times (2\mathbf{u} + \mathbf{w})$.
- (ii) **u.v**.
- (iii) a unit vector with the same direction as **v**.
- (iv) the angle between **u** and **v**.
- (v) an equation of the plane which passes through the point w and parallel to the plane 3x 3y 5z + 1 = 0.

(15 marks)

As illustrated in Figure Q2 above, if a convex lens has focal length f centimeters and if an object is placed a distance p centimeters from the lens with p > f, then the distance q from the lens to the image is related to p and f by the formula

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}.$$

If f = 5 cm, how close must the object be to the lens for the image to be more than 12 centimeters from the lens?

(5 marks)

PART B

Q3 (a) (i) Solve
$$\log_5 x + \log_{25} x = 3$$
.

(ii) Simplify
$$\frac{\log_a \frac{1}{81}a^{-4}}{\log_a \frac{1}{3a}}.$$

(11 marks)

(b) (i) Express
$$e^{3+\frac{11\pi}{6}i}$$
 in the Cartesian form $(a+bi)$.

(ii) By using De Moivre Theorem, simplify

$$\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)^4.$$

(9 marks)

Q4 A bakery produces cakes, doughnuts and muffins. Each product requires three ingredients flour, sugar and butter as listed below.

	Flour	Sugar	Butter
Cakes	30	21	12
Doughnuts	14	12	6
Muffins	8	6	4

The bakery has available 480 kg of flour, 360 kg of sugar and 200 kg of butter.

(a) Based on the information above and by assuming that x_1 , x_2 and x_3 as the number of cakes, doughnuts and muffins to be baked that day respectively, write the system in matrix form, AX = B.

(2 marks)

- (b) Based on the system of linear equations in (a), find the number of cakes, doughnuts and muffins to be baked that day by using
 - (i) Gauss elimination method.
 - (ii) Cramer's Rule.

(18 marks)

Q5 (a) If
$$\alpha$$
 and β are the roots for the quadratic equation $x^2 - 4x + 7 = 0$, find
(i) $\frac{1}{\alpha + 1} + \frac{1}{\beta + 1}$.
(ii) $\alpha^2 + \beta^2$.
(6 marks)
(b) Express $\frac{-2x^2 + 7x + 7}{(x^2 + x + 2)(x + 3)}$ as a partial fraction.

(8 marks)

(c) The equations of
$$L_1$$
 and L_2 are $y = 3x + 4$ and $y = 5x - 6$ respectively.

- (i) Determine if L_1 and L_2 are parallel.
- If they are not, find the point of their intersection. **(ii)**

(6 marks)

Q6 (a) Given
$$z_1 = 3 + 3i$$
, $z_2 = i^{43}(3 + 4i)^2$ and $z_3 = 1 - \sqrt{3}i$. Find $\frac{\overline{z_1 + z_2}}{z_3}$.
(6 marks)

Solve $7 \tan \theta + \cot \theta = 5 \sec \theta$ for $0 \le \theta \le 2\pi$. (b)

(5 marks)

(3 marks)

(c) Verify
$$\frac{\sin^2 x}{1 + \cos x} = \frac{1 - \cos x}{\csc x}$$

(d) Solve the inequality

Q5

(a)

$$\sqrt{3-3x} - \sqrt{2x+5} \ge \sqrt{2-x}$$

by using sign analysis and write the answer in interval notation.

(6 marks)

4

FINAL EXAMINATION				
SEMEST	ER / SESSION: SEM I / 2009/2010	COURSE : 1 BBV		
SUBJECT : MATHEMATICS I		CODE : BSM 1223		
<u>Formulae</u> Trigonometry				
1	$\sin^2 x + \cos^2 x = 1$			
2	$\tan^2 x + 1 = \sec^2 x$			
3	$1 + \cot^2 x = \csc^2 x$			

Cramer's Rule

r	_	A_{i}
×,		A

Vectors

vector unit = $\frac{v}{ v }$
$u \bullet v = \iota v \cos \theta$

Conic Section

Circle	$(x-h)^2 + (y-k)^2 = r^2$	
Parabola	$(y-k)^2 = 4p(x-h)$	
	Focus	(h+p,k)
	Directrix	h-p