

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME : HYDROLOGY

COURSE CODE : DAC 20502

PROGRAMME CODE : DAA

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION : 2 HOURS 30 MINUTES

INSTRUCTION : ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

Q1	(a) Define hydrologic cycle as a continuous movement of water which and below the earth surface.					
		and below the earth surface.	(2 marks)			
	(b)	Give six (6) parameters of hydrologic data.	(6 marks)			
	(c)	Data observation of 10 hectares reservoir has 1500 liter/s of average 730 liter/s of average outflow and 150 mm/day of evaporation rate. Calc	-21			
		(i) Area of reservoir (m ²).	(2 marks)			
		(ii) Rate of inflow (m³/day).	(2 marks)			
		(iii) Rate of outflow (m ³ /day).	(2 marks)			
		(iv) Rate of evaporation (m³/day).	(2 marks)			
		(v) Volume of storage (m³/day).	(2 marks)			
		(vi) Height of water (m/day) in the reservoir.	(2 marks)			
Q2	(a)	Define precipitation as a kind of weather condition.	(2 marks)			
	(b)	Explain the following categories of precipitation occurrence:				
		(i) Convective precipitation.	(2 marks			
		(ii) Orographic precipitation.	(2 marks			
		(iii) Cyclonic precipitation.	(2 marks			
	(c)	Refer to Table 1 determine the rainfall depth (cm) at station A				

(12 marks)

Q3	(a)	Define Mass Transfer Techniques as a method to estimate the evaporation rate. (2 marks)
	(b)	Give two (2) methods to estimate the evaporation rate in Mass Transfer Techniques. (2 marks)
	(c)	Describe the following factors affecting infiltration rate: (i) Soil characteristics. (2 marks)
		(ii) Fluid characteristics. (2 marks)
	(d)	Total storage of a pond is $181000~\text{m}^3$ in a month and the average inflow is $0.07~\text{m}^3/\text{s}$. Calculate the evaporation rate (m³/month). (4 marks)
	(e)	Refer to Table 2 , the mean value for air temperature is 29 °C, average wind speed is 12.5 km/hr and relative humidity is 39%. Determine:
		(i) Wind speed, U_2 (km/day). (2 marks)
		(ii) Saturation vapor pressure, e _a (mmHg). (2 marks)
		(iii) Actual vapor pressure in air, e _{aRh} (mmHg). (2 marks)
		(iv) Evaporation rate (cm/day) by using Dunne's equation. (2 marks)
Q4	(a)	Describe catchment area as a natural landscape in collecting water. (2 marks)
	(b)	Explain Intensity Duration Frequency that commonly used for flood forecasting. (6 marks)

CONFIDENTIAL

DAC 20502

	(c)	Refer to Table 3 , time of concentration is the time required for runoff to travel in a catchment area. Calculate:
		(i) Precipitation in descending value. (3 marks)
		(ii) Return period. (3 marks)
		(iii) Intensity Duration Frequency for 10-year. (3 marks)
		(iv) Intensity Duration Frequency for 5-year. (3 marks)
Q5	(a)	Describe surface runoff as a major component of the water cycle. (2 marks)
	(b)	Give two (2) methods in derivation of Unit Hydrograph. (2 marks)
	(c)	Explain the characteristics of staff in measuring water surface elevation. (4 marks)
	(d)	Refer to Table 4 , the time interval is an hour between readings for a storm hydrograph with the corresponding excess rainfall. Determine:
		(i) Total number of DRO ordinates. (2 marks)
		(ii) Value of UH Ordinates (m³/s.mm). (10 marks)
Q6	(a)	State two (2) types of substances that found in polluted groundwater. (2 marks)
	(b)	Give two (2) assumptions for steady unconfined radial flow toward a well. (2 marks)
	(c)	Explain groundwater replenishment which water is stored in the ground. (4 marks)

CONFIDENTIAL

DAC 20502

	(d)	The mass of a sample is 100 g has displaced 51 cm ³ of water when the soil is poured into a graduated cylinder. The volume of the sample is 57 cm ³ . Calculate:
		(i) Soil density (kg/m³). (2 marks)
	(a)	(ii) Soil specific gravity. (2 marks)
	(e)	A soil sample occupies 0.06 m³ has 100 kg of dry mass. When the soil is poured into a graduated cylinder, it displaces 30 liter of water. Determine:
		(i) Volume of air void (m³). (2 marks)
		(ii) Value of porosity. (2 marks)
		(iii) Soil bulk density ($sg_{soil} = 2.5$). (2 marks)
		(iv) Grain density. (2 marks)
Q 7	(a)	Define Gumbel's method for flood estimation. (2 marks)
	(b)	Explain applications of Gumbel's method in predicting the flood occurrence. (6 marks)
	(c)	Refer to Table 5 , the Gumbel extreme-value fit the recorded values. Calculate:
		(i) Value of T_p (years). (2 marks)
		(ii) Value of y_t (T = 5). (2 marks)
		(iii) Value of σ_{n-1} . TERBUKA (2 marks)
	(d)	Refer to Table 6 , the travel time constant is 8 hours and weighting factor is 0.3. Determine the outflow.
		(6 marks)
		- END OF QUESTIONS –

H

C

Ł

 \mathbf{E}

D

C

B

A

Station

9

98

75

18

38

15

LE

68

18

35 33

nim 02

2018

2017

5016

2015

7014

2013

2012

1102

2010

5000

Year

0

32

30 52

Temperature (°C)

SIL

065

055

015

930

065

015

055

 $^{\forall} d$

(ww)

Precipitation, P

75

95

85

15

IS

LS

23

65

IS

nim 04 Precipitation (cm) of Duration:

Table 3

Table 2

LL

EL

84

TL

91

SL

IL

IL

IL

64

nim 08

45.22

42.18

E8.1E

23.76 Vapor Pressure (mmHg)

01-

5-

£-

I-£-

I

5

7

0

(km)

is more greatless dus estellos 3076, particles pobed 3 2000 se historia CONFIDENTIAL

: DYC 50205 CONBRE CODE : HADBOFOGA

COURSE NAME

ς

3

ε

Lς-

L

ς

0

(km)

PROGRAMME CODE: DAA

Coordinate X | Coordinate Y

SEMESLEK/SESSION: SEM 1 / 5019/5050

FINAL EXAMINATION

Table 1

TERBUKA

05	100	730	320	210	06	Inflow (liter/s)
98	30	77	81	15	9	Time (hour)

Table 6

6657	3050	8672	797	5657	9785	0908	0067	2903	1947	Flood (s\ ⁵ /m)
7014	2013	2012	1107	7010	6007	8007	2007	9007	2002	Year

6657	3020	8672	797	5657	9785	0908	0067	2903	1927	Flood (s\ ⁵ /s)
7014	2013	2012	1107	2010	6007	8007	2007	9007	2005	Year

Table 5

372

049 095 067

100

SI

 $(s/_{\varepsilon} m)$

Direct Discharge

CONBRE CODE

PROGRAMME CODE: DAA

: DYC 50205

Table 4

DYC 50205

52

51

(ww)

Rainfall Excess

ς

3

(hour)

Time

CONBRE NAME: HYDROLOGY SEMESLER/SESSION: SEW 1 / 2019/2020

FINAL EXAMINATION

SEMESTER/SESSION: SEM 1/2019/2020

COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 20502

EQUATIONS:

$$\Delta S = I - O - E$$

$$L^2 = X^2 + Y^2$$

$$W = 1 / L^2$$

$$P_A = \Sigma (P X W) / \Sigma W$$

$$E = (0.013 + 0.00016U_2) X ea_{Rh} X [(100 - Rh) / 100]$$

$$T = (n + 1) / m$$

TERBUKA