

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

: HYDRAULICS

COURSE CODE

: DAC 21003

PROGRAMME CODE : DAA

EXAMINATION DATE

: DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

Русці Републіка Окропе Чаўмена Танты уса Гео Макжыя

DAC 21003

- Describe compressibility of liquid as a property of fluid. Q1 (4 marks) Compare two (2) differences between dynamic viscosity and kinematic viscosity. (b) (4 marks) Capillary rise in 3 mm diameter of tube for a mercury-air-glass interface with (c) 115°. Calculate as below: (i) Density of mercury ($sg_{mercury} = 13.6$). (2 marks) (ii) Specific weight (N/m³) of mercury. (2 marks) (iii) Capillary rise ($\sigma_{\text{mercury}} = 0.51$). (2 marks) Kerosene compressed in a cylinder has a volume of 10 liters at 100 kPa and a volume of 9 liters at 500 kPa. Determine as below: (i) Bulk modulus of elasticity (K). (2 marks) (ii) Initial mass of kerosene ($\rho_{\text{kerosene}} = 808 \text{ kg/m}^3$). (2 marks) (iii) Specific volume (m³/kg). (2 marks)
- Q2 (a) Define transducer as a pressure measuring device. RBUKA (4 marks)
 - (b) Compare **two** (2) differences between simple tube manometers and differential manometers. (4 marks)

- (c) Referring to **Table 1** and **Figure Q2(c)**, inverted manometers use to measure pressure inside a pipe. Calculate as below:
 - (i) Pressure of P_{x-left} (N/m²).

(4 marks)

(ii) Pressure of P_{x-right} (N/m²).

(4 marks)

(iii) Pressure difference of P_A – P_B (kPa).

(4 marks)

- Q3 (a) Sketch the center of buoyancy and gravity location as below:
 - (i) When a block is partly submerged.

(2 marks)

(ii) When a block is whole submerged.

(2 marks)

(b) Describe buoyancy concept according to Archimedes Principle.

(4 marks)

- (c) Referring to **Figure Q3(c)**, a 7 m width rectangular water gate leans against the floor. Determine as below:
 - (i) Magnitude of resultant force, F_R (N).

(5 marks)

(ii) Location of resultant force, y_R (m).

(5 marks)

(iii) Minimum force (N) required to open the water gate.

(2 marks)

de k

DAC 21003

Q4	(a)	Compare four (4) differences between laminar flow and turbulent flow.	(8 marks)
	(b)	Referring to Figure Q4(b) , diameter of pipe 1 is 150 mm and diamete is 75 mm. Specific gravity of oxygen in the pipe is 0.0013 and specific kerosene in the manometer is 0.808. Determine as below:	
		(i) Difference pressure $P_1 - P_2$ (N/m ²).	(9 marks)
		(ii) Value of velocity (m/s) at point 2 if velocity at point 1 is 3 m/s.	(3 marks)
Q5	(a)	Referring to Figure Q5(a), describe friction in pipe as major head loss.	(3 marks)
	(b)	Explain the pipe system in series arrangement.	(5 marks)
	(c)	Referring to Table 2 , the pipe system in parallel arrangement. Calculate	as below:
		(i) Velocity (m/s) of pipe 1.	(2 marks)
		(ii) Velocity (m/s) of pipe 2.	(4 marks)
	(d)	Referring to Table 3 , SAE 10 oil flows in a pipe. Calculate as below:	
		(i) Reynolds Number, Re.	(3 marks)
		(ii) Head loss (m) due to friction, h _f .	(3 marks)
		TERBUKA	

DAC 21003

Q6	(a)	Weir is a concrete structure which is constructed across the open channel to change its water flow characteristics. Discuss the characteristics of weir as below:
		(i) Rectangular weir. (2 marks)
		(ii) Triangular weir. (2 marks)
		(iii) Trapezoidal weir. (2 marks)
		(iv) Sharp-crested weir. (2 marks)
	(b)	Referring to Table 4 , the type of weir is rectangular notch weir. Calculate as below:
		(i) Coefficient of discharge. (2 marks)
		(ii) Discharge (m³/s) over the rectangular notch weir. (2 marks)
		(iii) Volume (m³) of water flow over the rectangular notch weir in a week. (2 marks)
	(c)	Triangular notch weir is having angle 10° and discharge over the notch is 57 X 10 ⁵ cm ³ /min. Determine the height (mm) of water level above the bottom of the notch weir when discharge coefficient is 0.59. (6 marks)
Q7	(a)	Compare two (2) differences between flow in open channel and flow in closed channel. (4 marks)
	(b)	Explain the types of flow as below:
		(i) Subcritical flow.
		(ii) Supercritical flow. (2 marks)
		(2 marks)

DAC 21003

(c) Water flows inside a culvert. Radius of the culvert is 1.2 m and height of the water flows in the culvert is 1.6 m. Determine as below:

(i) Wetted area (m²).

(2 marks)

(ii) Wetted perimeter (m).

(2 marks)

(iii) Hydraulic radius (m).

(2 marks)

(d) Referring to **Table 5**, analyze the state of flow based on Froude Number.

(6 marks)

- END OF QUESTIONS -

SEMESTER/SESSION: SEM 1 / 2019/2020

COURSE NAME

: HYDRAULICS

PROGRAMME CODE: DAA

COURSE CODE : DAC 21003

Table 1

Item	Value
ρ_a	1000 kg/m^3
Pair	1.23 kg/m^3
h ₁	25 mm
h ₂	50 mm
h ₃	80 mm

Figure Q2(c)

TERBUKA

SEMESTER/SESSION: SEM 1/2019/2020

COURSE NAME : HYDRAULICS

PROGRAMME CODE: DAA

COURSE CODE

: DAC 21003

Figure Q3(c)

Figure Q4(b)

TERBUKA

SEMESTER/SESSION : SEM 1 / 2019/2020 COURSE NAME : HYDRAULICS PROGRAMME CODE: DAA

COURSE CODE : DAC 21003

Figure Q5(a)

Table 2

Item	Value
Length of pipe 1	3 m
Length of pipe 2	9 m
Diameter of pipe 1	350 mm
Diameter of pipe 2	350 mm
Discharge of pipe 1	3000 liter/s
Value of friction factor	0.015

Table 3

Item	Value
Density of SAE 10 oil	918 kg/m^3
Dynamic viscosity of SAE 10 oil	82 X 10 ⁻³ kg/ms
Velocity of SAE 10 oil	0.3 m/s
Diameter of pipe	50 cm
Length of pipe	135 m

SEMESTER/SESSION: SEM 1/2019/2020

COURSE NAME : HYDRAULICS

PROGRAMME CODE: DAA

COURSE CODE : DAC 21003

Table 4

Item	Value
Width of weir	15 m
Head over sill	750 mm
Height of crest	3 m

Table 5

Item	Value
Top width of water surface	2.263 m
Wetted area	3.10 m^2
Wetted perimeter	4.59 m
Flow rate	$1.5 \text{ m}^3/\text{s}$

