

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

: ALGEBRA

COURSE CODE

DAS 10103/ DAM 10303/ DAE 13003

PROGRAMME CODE :

DAU / DAM / DAE

EXAMINATION DATE :

DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

TERBUKA

INSTRUCTION

ANSWER ALL QUESTIONS IN

SECTION A AND THREE (3)
QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

DAS 10103/ DAM 10303/ DAE 13003

SECTION A

- Q1 (a) Given u = 7i k, v = 3i 2j + k and w = 6i + j 5k. Find
 - (i) 4u 3v + w

(2 marks)

(ii) $\mathbf{v} \cdot (3\mathbf{u} \times 2\mathbf{w})$

(6 marks)

(b) Find the equation of the line that passes through points A(1, -3, 7) and B(-1, -2, 5).

(4 marks)

- (c) Given three points P(-3, 1, 4), Q(-2, 0, 3) and R(0, -1, 5). Find
 - (i) the normal vector, \mathbf{n} where $\mathbf{n} = P\mathbf{Q} \times P\mathbf{R}$.

(6 marks)

(ii) the equation of the plane with points P, Q and R on it, by using point P and n in Q1 (c)(i).

(2 marks)

Q2 (a) The complex number z_1 and z_2 are given by:

$$z_1 = -3 + 2i$$
 and $z_2 = 2 - 1i$

(i) Find $\frac{z_1}{z_2}$ in the form of a + bi where a and b are real numbers.

(4 marks)

(ii) Express $z_1 z_2$ in polar form.

(b) Determine $(4 + \sqrt{3}i)^5$ in the form of a + bi using De Moivre's Theorem.

(5 marks)

(c) Find all the 3^{rd} root of z = -27i by using De Moivre's Theorem.

(5 marks)

DAS 10103/ DAM 10303/ DAE 13003

SECTION B

Q3 (a) (i) Simplify $(5x^3y^{10})(2x^4y^2z^{-3})^3$ and write the answer in positive exponent.

(2 marks)

(ii) Given $27^x - \frac{9}{3^{-x}} = 0$. Find x.

(4 marks)

- (b) Simplify and give the answer in simplest form.
 - $(i) \qquad \frac{\sqrt{7}+9}{\sqrt{7}-1}$

(3 marks)

(ii)
$$\frac{\sqrt[3]{x^2y^3}\sqrt[3]{125x^3}}{\sqrt[3]{8x^3y^4}}$$

(4 marks)

(c) (i) Given $\log_2(\sqrt{256})^x = \log_{32} 16$. Find x.

(4 marks)

(ii) Given $\log_5 \sqrt[3]{25} = x$. Find x without using calculator.

(3 marks)

- Q4 (a) Solve the quadratic equation $2s^2 + 5s = 3$, by using completing the square. (5 marks)
 - (ii) Use the quadratic formula to solve $x^2 = 4x + 8$. Leave your answer in the form of $a \pm b\sqrt{c}$.

(5 marks)

- (b) Determine the partial fraction decomposition of $\frac{4x^2}{(x-1)(x-2)^2}$ (5 marks)
- (c) Given $f(x) = x^3 10x + 10$. If f(x) = 0, by secant method, find its roots between the interval of [1, 2]. Iterate until $|f(x_i)| < \varepsilon = 0.005$.

(5 marks)

DAS 10103/ DAM 10303/ DAE 13003

Q5 (a) Find the sum of $\sum_{k=1}^{19} \left(4k - 5k^3 + \frac{k^2}{5} \right)$

(5 marks)

- (b) The 5^{th} and 11^{th} term of an arithmetic sequence are -7 and 35 respectively.
 - (i) Find the first term and the common difference.

(5 marks)

(ii) Find the sum of the first 45 terms.

(2 marks)

- (c) A geometric sequence is defined as 9, 6, 4, ...
 - (i) Find the value of common ratio, r.

(2 marks)

(ii) Calculate the 15th term, a_{15} .

(2 marks)

(iii) State whether this series converges or diverges. If it is converges, evaluate its summation S_{∞} .

(4 marks)

- $\mathbf{Q6}$ (a) Without using calculator, find the exact value in surd form of:
 - (i) $2 \sec 30^0 + 3 \csc 60^0$

(3 marks)

(ii) cos 75°

(3 marks)

- (b) Solve the equation, for $0 \le \theta \le 2\pi$.
 - (i) $\tan \theta = -0.5543$

(3 marks)

(ii) $\sin^2 \theta + \frac{1}{2} \cos \theta = 1$

(4 marks)

- (c) Given $5 \sin \theta + 12 \cos \theta = r \sin(\theta + \alpha)$ and $0^{\circ} \le \theta \le 360^{\circ}$.
 - (i) Find r and α .

(3 marks)

(ii) Thus, find the value of θ if $5 \sin \theta + 12 \cos \theta = 6$.

(4 marks)

DAS 10103/ DAM 10303/ DAE 13003

Q7 (a) Given $A = 2\begin{bmatrix} 1 & x & 5 \\ y & 4 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & -x \\ 0 & 3 \\ z & z \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 5 \\ 6 & -3 \end{bmatrix}$.

(i) Solve x, y and z if AB = C.

(5 marks)

(ii) Find $(AB)^T$.

(4 marks)

(b) Given:

$$2x + y + z = 3$$
$$-3x - 2y = -7$$
$$3x + y - z = 6$$

(i) Write the matrix equation AX = B of the above system of equation.

(1 mark)

(ii) Find the determinant of matrix A.

(2 marks)

(iii) Solve the above system for x, y and z by using Gauss-Jordan elimination method. Do this following operation in order: $R_2 + R_3$, $R_3 - R_1$, $R_3 \Leftrightarrow R_1$,

$$R_3 - 2R_1, -R_2, R_3 - R_2, \frac{R_3}{4}, R_1 + 2R_3, R_2 - R_3.$$

(8 marks)

- END OF QUESTION -

TERBUKA

DAS 10103/ DAM 10303/ DAE 13003

FINAL EXAMINATION

SEMESTER / SESSION : SEM 1/2019/2020 PROGRAMME: DAU/ DAM/ DAE

COURSE : ALGEBRA COURSE CODE: DAS 10103/ DAM 10303/

DAE 13003

Formulae

Vector

$$\mathbf{a} \bullet \mathbf{b} = x_1 x_2 + y_1 y_2 + z_1 z_2, \ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$x = x_0 + a_1 t$$
, $y = y_0 + a_2 t$, $z = z_0 + a_3 t$ and $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$
 $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

Complex number

$$r = \sqrt{x^2 + y^2} \qquad \tan \theta = \frac{y}{x}$$

If $z = r(\cos \theta + i \sin \theta)$ then $z^n = r^n(\cos n\theta + i \sin n\theta)$

If
$$z = r(\cos\theta + i\sin\theta)$$
 then $z^{\frac{1}{n}} = r^{\frac{1}{n}} \left(\cos\frac{(\theta + 2k\pi)}{n} + i\sin\frac{(\theta + 2k\pi)}{n}\right)$

Exponent, Logarithm and Radical

$$\log_a x = \frac{\log_a x}{\log_a b}$$

Polynomials

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad x^2 + bx + c = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c, \quad x_{i+2} = \frac{x_i f(x_{i+1}) - x_{i+1} f(x_i)}{f(x_{i+1}) - f(x_i)}$$

Sequence and Series

$$\sum_{k=1}^{n} c = cn, \quad \sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$u_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d],$ $S_n = \frac{n}{2}(a + u_n),$ $u_n = S_n - S_{n-1}$ $u_n = ar^{n-1},$ $S_n = \frac{a(r^n - 1)}{r - 1}, r > 1$ or $S_n = \frac{a(1 - r^n)}{1 - r}, r < 1,$ $S_{\infty} = \frac{a}{1 - r}.$

DAS 10103/ DAM 10303/ DAE 13003

FINAL EXAMINATION

SEMESTER / SESSION: SEM 1/2019/2020 PROGRAMME: DAU/ DAM/ DAE

COURSE : ALGEBRA COURSE CODE: DAS 10103/ DAM 10303/

DAE 13003

Trigonometry

Angle θ	sin θ	cos θ	tan θ
30°	1/2	$\sqrt{3}/2$	$1/\sqrt{3}$
45°	$1/\sqrt{2}$	$1/\sqrt{2}$	1
60°	$\sqrt{3}/2$	1/2	$\sqrt{3}$

$$\sin^2 x + \cos^2 x = 1$$
, $\tan^2 x + 1 = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta, \qquad \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$
, $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta$

$$a\sin\theta + b\cos\theta = r\sin(\theta + \alpha), \ r = \sqrt{a^2 + b^2} \ \text{and} \ \alpha = \tan^{-1}\left(\frac{b}{a}\right)$$

Matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \ |A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

