

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER II SESSION 2017/2018

**COURSE NAME** 

: HYDROLOGY

**COURSE CODE** 

: DAC 20902

PROGRAMME CODE

: DAA

EXAMINATION DATE

: JUNE / JULY 2018

**DURATION** 

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY



THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

### CONFIDENTIAL

### DAC 20902

| Q1 | (a) | Define water balance equation as a modeling of hydrology.                                                                                                                                                                                   | (2 marks)              |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|    | (b) | Give six (6) locations of water storage in world water balance statistic.                                                                                                                                                                   | (6 marks)              |
|    | (c) | Referring to <b>Table 1</b> , compute final water level (m) in rectangular seditank.                                                                                                                                                        | mentation<br>(4 marks) |
|    | (d) | In 30 days data observation of 1000 acres reservoir has 2 inches precipit Average inflow into the reservoir was 5.9 X 10 <sup>5</sup> m <sup>3</sup> /day and average out the reservoir was 3.9 m <sup>3</sup> /s. Calculate the following: |                        |
|    |     | (i) Area of reservoir (m <sup>2</sup> ).                                                                                                                                                                                                    | (2 marks)              |
|    |     | (ii) Volume of precipitation (m <sup>3</sup> ).                                                                                                                                                                                             | (2 marks)              |
|    |     | (iii) Rate of inflow (liter/second).                                                                                                                                                                                                        | (2 marks)              |
|    |     | (iv) Change in storage (m <sup>3</sup> ) in 30 days data observation.                                                                                                                                                                       | (2 marks)              |
| Q2 | (a) | Identify <b>two (2)</b> situations which rain gauges is inconsistent over a period                                                                                                                                                          | d time.<br>(2 marks)   |
|    | (b) | Explain produres to form Double Mass Curve.                                                                                                                                                                                                 | (6 marks)              |

(c) Referring to **Table 2**, after four years, gauge D was relocated due to technical problem. Compute the adjusted precipitation at station D for the period from 2007 to 2010.

(12 marks)





## CONFIDENTIAL

### DAC 20902

| Q3 | (a) | Define infiltration process which leads to groundwater storage. (2 marks)                                                                                                 |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Explain rainfall simulator as an equipment to measure infiltration rate. (6 marks)                                                                                        |
|    | (c) | Referring to <b>Table 3</b> , a storm produced a direct runoff of 145 mm in the 13 hectare of catchment area. Calculate:                                                  |
|    |     | (i) Rainfall intensity (mm/hr). (2 marks)                                                                                                                                 |
|    |     | (ii) Rainfall excess (mm/hr). (8 marks)                                                                                                                                   |
|    |     | (iii) Volume of rainfall excess (m³). (2 marks)                                                                                                                           |
| Q4 | (a) | Describe the contribution of intensity duration frequency study in urban storm water management. (3 marks)                                                                |
|    | (b) | Explain the procedure of Intensity Duration Frequency (IDF) Analysis. (5 marks)                                                                                           |
|    | (c) | Referring to <b>Table 4</b> , determine the rainfall intensity (mm/hr) for 5-year and 10-year frequencies by using Intensity Duration Frequency (IDF) Method.  (12 marks) |
| Q5 | (a) | Write <b>four (4)</b> fundamental assumptions in the use of unit hydrographs for modelling hydrologic system.  (4 marks)                                                  |
|    | (b) | Give <b>four (4)</b> uses of unit hydrograph in water management. (4 marks)                                                                                               |
|    | (c) | Referring to <b>Table 5</b> , calculate the direct runoff (m³/s) by using deconvolution method.  TERBUKA (12 marks)                                                       |

A. CONFIDENTIAL

A. CONFIDENTIAL

A. CONFIDENTIAL

A. CONFIDENTIAL

A. CONFIDENTIAL

A. CONFIDENTIAL

### **CONFIDENTIAL**

DAC 20902

| Q6         | (a) | State <b>four (4)</b> parameters of groundwater storage. (4 marks)                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | (b) | Compare <b>two (2)</b> differences between hydraulic conductivity and transmissivity. (4 marks)                                                                                                                                                                                                                                                                                                                                                          |
|            | (c) | The soil under the dam consists of four layers as shown in <b>Figure Q6(c)</b> . Calculate the average conductivity (m/day) and transmissivity (m²/day) of the soil when water table is at the ground surface. Calculate:                                                                                                                                                                                                                                |
|            |     | (i) Average conductivity (m/day). (4 marks)                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |     | (ii) Transmissivity (m²/day). (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | (d) | Referring to <b>Figure Q6(d)</b> , a fully penetrating 12 cm diameter well has its bottom 80 meter below the static ground water table. After 24 hours of pumping at 1100 m <sup>3</sup> /min, the water level in the test well stabilizes to 10 meter below the static water table. A draw-down of 3.65 meter is noticed in an observation (test) well 300 meters away from the pumped well. Determine the hydraulic conductivity of the aquifer (m/s). |
|            |     | (6 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Q</b> 7 | (a) | Define flood routing process. (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | (b) | Explain <b>three (3)</b> functions of flood routing. (6 marks)                                                                                                                                                                                                                                                                                                                                                                                           |
|            | (c) | Referring to <b>Table 6</b> , analyze peak flow rates (m <sup>3</sup> /s) for 10-year return period by                                                                                                                                                                                                                                                                                                                                                   |

- END OF QUESTIONS -



(12 marks)



using Gumbel's method.

### FINAL EXAMINATION

SEMESTER/SESSION: SEM 2 / 2017/2018

COURSE NAME : HYDROLOGY PROGRAMME CODE: DAA

COURSE CODE : DAC 20902

Table 1: Data of Rectangular Sedimentation Tank

| Item                    | Value              |
|-------------------------|--------------------|
| Initial water level     | 7 m                |
| Volume of precipitation | $22.5 \text{ m}^3$ |
| Total of evaporation    | 300 mm             |
| Width of tank           | 15 m               |
| Length of tank          | 5 m                |

**Table 2: Data of Annual Precipitation** 

|      | Annual Precipitation (mm) |    |    |    |
|------|---------------------------|----|----|----|
| Year | A                         | В  | С  | D  |
| 2007 | 38                        | 42 | 45 | 75 |
| 2008 | 45                        | 45 | 45 | 35 |
| 2009 | 35                        | 45 | 35 | 15 |
| 2010 | 45                        | 40 | 40 | 25 |
| 2011 | 45                        | 42 | 43 | 55 |
| 2012 | 30                        | 30 | 40 | 45 |
| 2013 | 45                        | 55 | 50 | 50 |
| 2014 | 30                        | 40 | 50 | 40 |
| 2015 | 40                        | 55 | 35 | 50 |
| 2016 | 55                        | 35 | 40 | 50 |

Table 3: Data of Cumulative Rainfall

| Time                        | 1200 | 1300 | 1400 | 1500 | 1600  | 1700  | 1800  | 1900  | 2000 |
|-----------------------------|------|------|------|------|-------|-------|-------|-------|------|
| Cumulative<br>Rainfall (mm) | 0    | 10   | 32.5 | 70   | 127.5 | 172.5 | 212.5 | 237.5 | 250  |



### FINAL EXAMINATION

SEMESTER/SESSION: SEM 2/2017/2018 COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 20902

**Table 4: Data of Precipitation** 

|      | Precipitation (mm) |        |        |        |
|------|--------------------|--------|--------|--------|
| Year | 15 min             | 30 min | 45 min | 60 min |
| 2007 | 21                 | 43     | 63     | 87     |
| 2008 | 29                 | 45     | 61     | 83     |
| 2009 | 27                 | 41     | 67     | 85     |
| 2010 | 25                 | 47     | 75     | 95     |
| 2011 | 33                 | 53     | 73     | 93     |
| 2012 | 35                 | 57     | 77     | 97     |
| 2013 | 39                 | 59     | 79     | 91     |
| 2014 | 37                 | 55     | 71     | 99     |
| 2015 | 23                 | 51     | 70     | 81     |
| 2016 | 30                 | 49     | 65     | 89     |

Table 5: Data of UH Ordinates and Rainfall

| Time | UH Ordinates (m³/s.mm) | Rainfall (mm) |
|------|------------------------|---------------|
| 0700 | -                      | -             |
| 0800 | 2                      | 20            |
| 0900 | 8                      | 60            |
| 1000 | 12                     | 40            |
| 1100 | 40                     |               |
| 1200 | 212                    |               |
| 1300 | 60                     |               |
| 1400 | 28                     |               |
| 1500 | 20                     |               |
| 1600 | 8                      |               |
| 1700 | 4                      |               |
| 1800 | 2                      |               |



### FINAL EXAMINATION

SEMESTER/SESSION: SEM 2 / 2017/2018 COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 20902

**Table 6: Data of Flowrate** 

| Year | Flowrate (m <sup>3</sup> /s) |
|------|------------------------------|
| 1997 | 19500                        |
| 1998 | 9930                         |
| 1999 | 14400                        |
| 2000 | 20700                        |
| 2001 | 20300                        |
| 2002 | 16400                        |
| 2003 | 19500                        |
| 2004 | 20500                        |
| 2005 | 11900                        |
| 2006 | 8850                         |
| 2007 | 9280                         |
| 2008 | 17000                        |
| 2009 | 12400                        |
| 2010 | 14600                        |
| 2011 | 30600                        |
| 2012 | 1700                         |
| 2013 | 22500                        |
| 2014 | 17400                        |
| 2015 | 15400                        |
| 2016 | 15500                        |
|      |                              |



**COURSE NAME** 

### FINAL EXAMINATION

SEMESTER/SESSION: SEM 2/2017/2018

: HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE

: DAC 20902



Figure Q6(c): Four layers of soil



Figure Q6(d): Pumping well

TERBUKA