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PART A
Answer all questions in PART A.

Q1 (a) State the performance specification for a second-order system and indicate the
specification in a step response graph.

(5 marks)

(b) Figure Q1.1 depicts a jet transport aircraft's stick-fixed longitudinal roots. Identify the
roots of the corresponding longitudinal dynamic modes and determine the time for the
amplitude to half, as well as the number of cycles.
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Figure Q1.1 The stick-fixed longitudinal roots of a jet transport aircraft.
(6 marks)

() An attitude control system for a satellite vehicle within the earth's atmosphere is
shown in Figure Q1.2. The transfer functions of the system are given as follows:

_ K(s+0.2)
Gla)= (s +0.9)(s —0.6)(s — 0.1)
2
G = (s* + 4s + 6.25)

(s+4)

Determine the range of gain, K, that results in a system with a settling time of less
than 10 s and a damping ratio for the complex roots greater than 0.643. Provide a
root locus sketch for the closed-loop system as K varies from 0 to oo with the
following calculations such as the asymptote angles, centroid and angle of
departure/arrival to support your answer.
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Controller Satellit_e
Desired Attitude tyum
S > Attitude, ¢(s)
Pa(s) + 2
G, () i G (S ) ke

Figure Q1.2 The block diagram for the satellite control system.
(14 marks)

Q2 In terms of flying and handling quality, the short-period response characteristics of an
aircraft are particularly important. The governing equation of this simple motion is
obtained from Newton’s second law and is given as:

Ad + 3Aa + 2Aa = Ad,

where Aa is the change in the angle of attack (assumption: the change in the angle of
attack and pitch angles are identical), Ade is the change in elevator angle. Note that the
initial condition of this simple motion is given as @(0) = 1 and Aa = 0.

(a) Write the second-order differential equation in state-space form.
(6 marks)

(b) Find the solution to the state space model in Q2(a) using Paynter’s numerical
method. Use the time interval At = 0.01 to solve the numerical problem.

(8 marks)

(c) Plot the output response of the system, a(t) based on the solution obtained in Q2(b).
Indicate in the graph when the steady state value of the output response, a(t) is
achieved.

(6 marks)
(d) Comment on the time response characteristics of the short-period motion obtained

for this aircraft. Do your findings agree with the handling quality criteria shown in
Figure Q2.1?

(5 marks)

3 CONFIDENTIAL

TERBUKA




CONFIDENTIAL BDU 21403

60—

g
o
I

Undamped natural frequency, wp, rad/s

101~ Unacceptable to maneuver, i
difficult fo trim
0 1 1 1 I 1
0.1 05 10 20 30 40
Damping ratio, {

Figure Q2.1 The short period flying quality.

Q3 (a) Describe the physical characteristics of the Dutch Roll stability mode.
(2 marks)

(b) The Dutch Roll motion can be approximated using the following equation:

) & Y5
[ :-uE (1_—)[ﬁ]+ 150 or
N Nr‘ Ns,

Assume the aircraft has the following stability derivatives as follows:

Yp = —19.5 ft/s? Y.=13fts
=1552 N, =—-0.215"
Y5, = —4.7 ft/s Ns, = 0.082 s
uy = 400 ft/s

(i) Determine the characteristic equation of the Dutch Roll mode.
(3 marks)

(it) Determine the eigenvalues of the Dutch Roll mode.
(2 marks)

(iii) Determine the damping ratio, natural frequency, period, time to half amplitude,
and the number of cycles to half amplitude for the Dutch Roll mode.

(5 marks)
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(c¢) Determine the yaw rate to rudder input transfer function from the state space equation
in Q3(b).

(6 marks)

(d) Determine the yaw damper gain for the aircraft in Q3(b) that provides adequate
damping in Dutch Roll mode. Use the block diagram in Figure Q3.1 as the controller
structure for the design problem. The system performance is expected to have a
damping ratio, ¢ = 0.3 and natural frequency, w,, = 1 rad/s. Consider the sensor used
in the control system design to be a perfect device.

Aircraft
Dynamic
Desired yaw i —25s N
rate, 7,(s) : ( ) M G(s) = S » Yaw rate, r(s)
K, |*

Figure Q3.1 The yaw damper control system.
(7 marks)
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PART B
Answer only ONE question from Part B.

Q4 Consider a pitch autopilot system with a stability augmentation mechanism for a fixed-
wing based unmanned aerial system shown in Figure Q4.1.

Desired Pitch Aireraft
Angle, 8,(s) i
—+->O—> o - 205 bl » Pitch
hy e _ 52+ 0.65s + 2.15 s angle, 8(s)
qu <t

Figure Q4.1 Pitch angle control system.

(a) Determine the time response performance of the open-loop system and comment on
any problems with the system.

(5 marks)

(b) Determine the proper controller gains for the aircraft to improve the system response
characteristics so that the control system has the following performance: overshoot,
0S = 5% and settling time, T = 2 sec. Evaluate the steady-state error performance
of the compensated system and comment on any design problems.

(20 marks)

QS A roll control system for a fixed wing aircraft is shown in Figure Q5.1. The transfer
functions of the system are given as follows:

1
‘©=G+D
GC (S) = (S + 9)
UAV Roll
Controller Dynamic

v

_}.
Desired Roll
ey @ au IO

G(s) —a» Roll angle, ¢(s)

Figure Q5.1 Simplified block diagram for roll angle control system.
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(a) Figure Q5.2 shows the resulting root locus plot for the roll control system when
operated at £ = 0.707 which results in controller gain, K = 4.04 with the following
complex poles, 5;, = —0.472 + 0.472j. Determine the centroid, asymptote angles
and imaginary axis intersection points of the root locus plot.

Root Locus Graph
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Figure Q5.2 The root locus plot for the roll control system. The red cross mark
symbols indicate the closed-loop poles of the system.

(5 marks)

(b) Evaluate the time response characteristics of the uncompensated system in Q5(a). If
the PD controller design is intended to be used as a compensator, recommend the value
of PD controller gains for the roll angle control system so that the system operates at a
damping ratio of & = 0.707 with a double reduction in settling time. Provide a detailed
root locus plot for the closed-loop system as K varies from 0 to o with necessary
calculations such as the asymptote angles and centroid to support your answer.

(20 marks)

-END OF QUESTION-
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APPENDIX A
Key Equations

The relevant equations used in this examination are given as follows:

1.

The determinant of a 3 X 3 matrix:

a b c
d e f:a,l:I f|—-b]§ {|+C|3 z (1)
g h i :
2. Partial fraction for F(s) with real and distinct roots in the denominator:
1 KZ Km
F(s) = + o —
R TS R CE R vy @
3. Partial fraction for F(s) with complex or imaginary roots in the denominator:
K K;s + K3
F(S)_(s+p1)+(sz+as+b)+ &)
4. General first-order transfer function:
G(s) = 4
()= @
5. General second-order transfer function:
K
Gisd = s2 + 28w, s + w, ©)
6. The closed-loop transfer function:
G(s)
T(s) = —————
where G (s) is the transfer function of the open-loop system/forward path
elements, and H(s) is the transfer function in the feedback loop.
7. The final value theorem:
HEpE = ) ™)
8. Time response:
2.2
tp = (3
4
T, =~ ©
(S
%0S =e (wfl—fz) X 100% 4
0s
.. (%150)
Jrt+ (16 55) v
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m T

T =
P 8 g (12)
4 4
e o (13)
1.768% — 041782 + 1.0398 + 1
T. = = (14)
n
21
= 15)
g
_ 0693
5 = ol (16)
[yl
Ny, = 0.110%]— (17)

9. Estimation of parameter q (Paynter Numerical Method)
=Rl | (18)
10. Estimation of the integer value of p (Paynter Numerical Method)
1
= nq
p!(nq)pe <0.001 (19)
11. Numerical solution of state equation:

Xpr1 = Mxy + N
with matrix M and NNV are given by the following matrix expansion:

s
M = et =1 + AAt + EAZAtZ =
1 1 -
N =2Af (I + 57 AAL + gl-AzAtz + e ) B
12. Characteristic equation of the closed loop s'ystem:
1+ KG(s)H(s) =0 (21)
13. Asymptotes: angle and real-axis intercept:
[X Real parts of the poles — ¥, Real parts of the zeros]
o= (22)
n—m
180°[2q + 1]
e a
14. The solution to determine real axis break-in and breakaway points:
dK(o) 5 -
do_ = (“ )
15. Final value of continuous linear time invariant (L TI) systems:
x(t) = Ax(t) + Bu(t)
(t) = Cx(t .
y(© @ 25)
In response to a step input w(%) with amplitude R is: . ¢
lim y(t) = —CA™'BR
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16. An alternative solution to find real axis break-in and breakaway points:

Y=y — 26
o+z; Lio+p; (20)

17. The angle of departure of the root locus from a pole of G(s)H(s):

6 = 180° + Z(angies to zeros) — Z(angles to poles) 27)
18. The angle of arrival at a zero:
g =180°— Z(angles to zeros) + Z(angles to poles) (28)
19. The steady-state error:
I tlirg e(t) = il_r,%l sE(s) (29)
where the error signal is given as:
E(s) = XU
®) = I rmemae '
(30)
Denominator of equation, 1 + K(s)G(s)H(s) = 0 indicates the characteristic
equation of the closed loop system.
20. The characteristic equation for the standard form of the second-order differential
equation:
A2+ 28w A+ i =
The roots of the characteristic equation are: (31
3~1,2 = _fwn u = Wny L~ {'2 -1
=0t wy
21. The calculation of controller gains using the Ziegler-Nichols method:
Table 1 The Ziegler-Nichols tuning method.
Control Type K, K, Ky
P 0.5K, - -
PI 045K, 12K,/T, - (32)
PD 0.8K,, - KT, /8
Classic PID 0.6K, 2K,/T, KT, /8
Pessen Integral Rule  0.7K, 2.5K,/T, 3KpT,/20
Some Overshoot  0.33K,  2K,/T,  KpT,/3
No Overshoot 0.2K, 2K,/T, KyT,/3
22. Conversion from the state-space model to transfer function model: (33)
G(s) = Cadj(sf - A)
)= det(sI — A)
23. Final value theorem for transfer function model: (34)
lim f(t) = limsF(s)
t—oo 50
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24. Compensator design using the Root Locus:

controller / plant
Py rtional (P’
C(s) g T
T fl e
Ge(s) Gp(s) + — F =
! compensator
choice of Proportional-Derivative (PD)
sensor / H compensators
S - -
/ transducer ( ) (usually, H{s) =1). —NK(s+2)
— Gc(s )
generic system block diagram with Proportional-Integral (P1)
controller/compensator and feedback =
purpose: to improve the system’s dynamics — i : s

by proper choice of the controller TF and gain

Open-Loop TF: KNG, (s)G(s)H(s) Closed-Loop TF:

KG,(s)Ge(s)
L+ KGy(s)Ge(s)H(s)

25. Root I{F’,‘f!‘f:‘, skgtqtaipg gqles: =

2

The root locus contours are symmetrical about the real axis.

The number of separate branches of the root locus plot is equal 1o the number of poles of the transfer
function G(s)H(s). Branches of the root locus originate at the poles of Gls)H(s) for k = 0 and
terminate at either the open-loop zeroes or at infinity for &k = =. The number of branches that
terminate al infinity is equal to the difference between the number of poles and zeroes of the
transfer function G(s)H(s), where n = number of poles and m = number of zeros.

. Segments of the real axis that are part of the root locus can be found in the following manner: Points

on the real axis that have an odd number of poles and zeroes to their right are part of the real axis
portion of the root locus.

. The roat locus branches that approach the open-loop zeroes at infinity do so along straight-line

asymptotes that intersect the real axis at the center of gravity of the finite poles and zeroes.
Mathematically this can be expressed as

T = [2 Real parts of the poles — E Real parts of the zcrocs]/m - m)

where n 1s the number of poles and m is the number of finite zeroes.

- The angle that the asympiotes make with the real axis is given by

180°[2¢ + 1)

="M

b,

forg =001, 2, uns fni=m =1}

. The angle of departure of the root locus from a pole of Gis)H(s) can be found by the following

expression:

b= *1BF2g+ 1)+ g=0 12 ..
where ¢ is the net angle contribution at the pole of interest due o all other poles and zeroes of
G(s}H(s). The arrival angle at a zero is given by a similar expression:

b= £180°(2g+ 1) + o g=0.1.2,...

The angle ¢ is determined by drawing straight lines (rom all the poles and zeroes to the pole or zero
of interest and then summing the angles made by these lines.

. If a portion of the real axis is part of the root locus and a branch is between two poles, the branch

must break away from the real axis so that the locus ends on a zero as & approaches infinity. The
breakaway points on the real axis are determined by solving

1+ GhH=0

for k and then finding the roots of the equation dk/ds = 0. Only roots that lie on a branch of
the locus are of interest.

11 CONFIDENTIAL

TERBUKA




CONFIDENTIAL

BDU 21403

26. The Laplace transform theorems:

Laplace transforms—Table

f(e)= L{F(s)} F(s) f(&)= L{F(s)} F(s)
a w
a t=20 ; 5510 sin wt 71 o2
sETw*
a s
at +£20 — coswt e
s 5° + w*
1 x
gt b sin(wt + ) M
s5+a 5+ w*

1 scosf —wsin 8
te~c P —— t+ 48 —_—
te T cos(w ) T

— 1 : 2ws
Et e i tsin wt m
1 5P —w?
u-le-t:: t t
(n—1)! (s +a)” £9=9 (5 + w?)?
5 1 w
g s>a sinh wt —_— 5> |w]
5—a Sy
. 1 s
Epie ——r coshwt - - 5> |wl
(s —a)? s —w?

4 —ar —be -.—1 e % sin wt P
b_a(e = (s+a)(s+b) (s+a)?+et
1 1 i s—+a

i — p—Ofe 1 T pee e N -G s e
- [1—e™=(1+ at)] EEETL e % cos wt Gra Tl
- n! &5 w
¢ = 2] - x —_—
t sml n=123 e =mawt (s—a)® +w?
i n! 3 . SIsEd
G s>a e cosw GCoaite
n,—at n! —-at g
the W s5>a 1—e s(sta)
. [T 1 1
s Vi = — 4 A =gt R L.
L 2532 a? ot 1447%) s¥(s+a)
i T o
—= = s>0 flt—1t) e F(s)
Vi S
a(t)-p(9) G(s)-P(s) FAGES A ) F(s)£FR(s)
F (o
Jf(t) dt ﬂ L Tato) §(t) unit impulse 1 alls
£ s
df df -
i sF(s)—f(o *F(s)—sf(0)— F'(0
il ()~ £(0) = S2F(s) — sF(0) — £(0)
d? 2t e l
< SF(s) = 5" (0) = 5" (0) — 5" (0) = = £ (0)
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