

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

: CHEMISTRY

COURSE CODE

: DAS 12203

PROGRAMME

: 1 DAM

EXAMINATION DATE

: DECEMBER 2016/JANUARY 2017

DURATION

: 3 HOURS

INSTRUCTION

SECTION A: ANSWER ALL

OUESTIONS.

SECTION B: ANSWER TWO (2)

QUESTIONS ONLY.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

SECTION A

Q1 (a) Consider the following equilibrium process at 700°C:

$$2H_2(g) + S_2(g) \implies 2H_2S(g)$$

Analysis shows that there are 2.50 moles of H_2 , 1.35×10^{-5} mole of S_2 , and 8.70 moles of H_2S present in a 12.0L flask. Calculate the equilibrium constant K_c for the reaction.

(6 marks)

(b) For the reaction

$$H_2(s) + CO_2(g) \longrightarrow H_2O(g) + CO(s)$$

at 700° C, $K_c = 0.534$. Calculate the number of moles of H₂, that are present at equilibrium if a mixture of 0.300 mole of CO and 0.300 mole of H₂O is heated to 700° C in a 10.0L container.

(9 marks)

(c) Consider the following equilibrium process:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$
 $\Delta H^\circ = 92.5 \text{ kJ/mol}$

Predict the direction of the shift in equilibrium when

- (i) the temperature is raised.
- (ii) more chlorine gas is added to the reaction mixture.
- (iii) some PCI, is removed from the mixture.
- (iv) the pressure on the gases is increased.
- (v) a catalyst is added to the reaction mixture.

(5 marks)

Q2 (a) Define an acid and base according to the theory of Arrhenius.

(2 marks)

(b) Given the following acid base-reaction:

$$H_2SO_4(aq) + NaH_2PO_4(aq)$$
 \longrightarrow $NaHSO_4(aq) + H_3PO_4(aq)$

- (i) Write the overall ionic equation for the reaction.
- (ii) Identify the Brønsted-Löwry acid and base.

(6 marks)

(c) In a NaOH solution, [OH] is 2.9 x 10⁻⁴ M. Calculate the pH of the solution.

(5 marks)

(d) The pH of a 0.25 M aqueous HF solution is 1.92. Calculate K_a for this weak acid.

(7 marks)

Q3 (a) Calculate the standard emf of a cell that uses the Mg/Mg²⁺ and Cu/Cu²⁺ half-cell reactions at 25°C. Write the equation for the cell reaction that occurs under standard-state conditions.

(5 marks)

(b) Determine the potential of a cell made up of Zn/Zn^{2+} and Cu/Cu^{2+} half-cells at 25°C if $[Zn^{2+}] = 0.25$ M and $[Cu^{2+}] = 0.15$ M?

(7 marks)

(c) Explain the differences between a primary galvanic cell - one that is not rechargeable and a storage cell (for example, the lead storage battery), which is rechargeable.

(8 marks)

SECTION B

Q4 (a) Consider the reaction

$$KMnO_4 + 5FeCl_2 + 8HCl \longrightarrow MnCl_2 + 5FeCl_3 + 4H_2O + KCl$$

If 70.0 mol of FeCl₂ and 15.0 mol of KMnO₄ are mixed with excess HCl, determine the moles of MnCl₂ that can be formed?

(6 marks)

(b) Write a balance equation for chemical reaction below. Calculate the number of mole of H_2 that can be prepared by treating 15.00 g K with 30.00 g H_2 O.

(Relative atomic mass: K = 23, O = 16, H = 1)

$$K + H_2O \longrightarrow KOH + H_2$$

(8 marks)

(c) A sample of oxygen gas occupies a volume of 2.55 L at 24.0 °C and 0.679 atm pressure. Calculate the volume of this sample at STP?

(6 marks)

- Q5 (a) Determine the values of n and l of the following sublevels.
 - (i) 4*d*
 - (ii) 3*p*

(4 marks)

(b) Write the electron configuration of Mg, Cr^{2+} and Cu^{+} . (Atomic number: Mg = 12, Cr = 24, Cu = 29)

(6 marks)

(c) Arrange the following atoms in order of increasing atomic radius: Si, Mg, Cl, P, Al.

(3 marks)

(d) Given the following valence orbital diagrams, rank these elements in order of increasing atomic size and ionization energy.

(4 marks)

- (e) Indicate which one of the two species in each of the following pairs is smaller:
 - (i) Na or Na⁺
 - (ii) O^{2-} or S^{2-}
 - (iii) Mg²⁺ or Al³⁺

[Atomic number, Z: Al = 13, Mg = 12, Na = 11, O = 8, S = 16] (3 marks)

Q6 (a) Classify the following bonds as ionic, polar covalent, or nonpolar covalent

4

- (i) SiSi bond in Cl₃SiSiCl₃,
- (ii) CaF bond in CaF₂,
- (iii) NH bond in NH₃.

(3 marks)

- (b) Draw Lewis structures for the following molecules and ions:
 - (i) N_2F_2 ,
 - (ii) Si_2H_6 ,
 - (iii) CH₂ClCOO ⁻

[Atomic number, Z : F = 9, N = 7, Si = 14, C = 6, Cl = 17, H = 1, O = 8] (6 marks)

(c) Calculate the density of hydrogen bromide (HBr) gas in g/L at 733 mmHg and 46°C.

(6 marks)

(d) In alcohol fermentation, yeast converts glucose to ethanol and carbon dioxide:

$$C_6H_{12}O_6(s) \rightarrow 2C_2H_5OH(l) + 2CO_2(g)$$

If 5.97 g of glucose reacts and 1.44 L of CO₂ gas is collected at 293 K and 0.984 atm, what is the percent yield of the reaction?

(5 marks)

Q7 (a) Calculate how much heat is released when 235.0 g glucose is burned in this reaction:

$$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2 + 6H_2O(g), \quad \Delta H = -2801 \, kJ$$

(Relative atomic mass: C = 12.00, H = 1.00, O = 16.00)

(5 marks)

(b) Consider the reaction

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

Data for the above reaction are given in the table.

Experiment	Concentration (mol/L)		Initial Rate
	[NO]	$[O_2]$	(mol/L.hour)
1	3.6×10^{-4}	5.2 x 10 ⁻³	3.4 x 10 ⁻⁸
2	3.6×10^{-4}	1.04 x 10 ⁻²	6.8 x 10 ⁻⁸
3	1.8×10^{-4}	1.04×10^{-2}	1.7 x 10 ⁻⁸
4	1.8 x 10 ⁻⁴	5.2×10^{-3}	?

- (i) Write the rate law for this reaction.
- (ii) Determine the order of NO, O_2 and overall reaction.
- (iii) Calculate the rate constant, k.
- (iv) Calculate the initial rate of the reaction in experiment 4.

(15 marks)

- END OF QUESTIONS -

TERBUKA

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER: 1

SESSION: 2016/2017

PROGRAMME: 1 DAM

COURSE: CHEMISTRY

COURSE CODE: DAS 12203

FORMULAE

1. Number of moles = $\frac{MV}{1000}$

- 2. $pH = -\log [H^{+}]$
- 3. pH + pOH = 14
- 4. $P_1V_1 = P_2V_2$
- 5. $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
- 6. PV=nRT

