

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2023/2024**

COURSE NAME

FLUID MECHANICS

COURSE CODE

: BNP 10303

PROGRAMME CODE : BNA/BNB/BNC

EXAMINATION DATE : JULY 2024

DURATION

: 3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE **EXAMINATION**

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

- Q1 The capillary effect in fluid mechanics and the use of a manometer are both concerned with measuring pressure, albeit in different contexts.
 - (a) Explain the capillary effect of water and mercury.

(6 marks)

(b) Figure Q1.1 shows a mercury manometer attached to a container of oil. Calculate the value of h if specific gravity (SG) for oil is 0.8.

(8 marks)

Figure Q1.1 A mercury manometer attached to a container.

(c) A semi-circular gate is shown in **Figure Q1.2**. Given the width of the gate is 1.2 m, the mass is 1000 kg. Analyse the force, *F* that is required to lift the gate.

(11 marks)

Figure Q1.2 A semi-circular gate.

- Q2 The purpose of venturimeter is to gauge the flow rate of water jetting through the irrigation channels by optimizing the distribution efficiency.
 - (a) Given the velocity of a liquid is 1.2 m/s in a 160 mm pipeline with a specific gravity of 1.7, determine below:
 - (i) Flow rate in m^3/s

(2 marks)

(ii) Mass flow rate

(2 marks)

(iii) Weight flow rate

(2 marks)

- (b) Figure Q2.1 shows a venturi meter equipped with a manometer. The specific gravity of the gage fluid in the manometer is $1.20 \ (\gamma g = 14.02 \ kN/m^3)$ while the venturi meter flows water at 50° C $(9.69 \ kN/m^3)$.
 - (i) Calculate the pressure difference between A and B.

(5 marks)

(ii) Justify that the velocity at B is four times higher than at A.

(3 marks)

Figure Q2.1 Venturi meter equipped with a manometer

- (c) **Figure Q2.2** shows a water jet strikes on a vane at 35°. The water flows at 0.82 kg/s with a velocity of 27 m/s.
 - (i) Estimate the resultant force and its direction.

(8 marks)

(ii) Construct a diagram showing the resultant force and its direction.

(3 marks)

Figure Q2.2 A water jet strikes on a vane at 35°.

- Q3 Understanding pressure and head loss in pipes is essential for designing and analysing piping systems in various engineering applications, including fluid transport systems.
 - (a) Sketch and explain **THREE** (3) differences in the characteristics of laminar and turbulent flow in the pipes.

(8 marks)

(b) A galvanized iron pipe with a diameter of 3.5 m is used to flow water in horizontal axis at rate of 65 m³/s. If the difference of pressure heads is 2 m and kinematic viscosity, υ is given as 1.13 × 10⁻⁶ m²/s, determine the length of pipe.

(6 marks)

TERBUKA

- (c) A 6 cm diameter horizontal water pipe expands gradually to a 9 cm diameter pipe as shown in **Figure Q3.1**. The walls of the expansion section are angled 10° from the axis. The average velocity and pressure of water before the expansion section are 7 m/s and 150 kPa, respectively. By referring to **Figure Appendix A2**, analyze below:
 - (i) The head loss in the expansion section.

(6 marks)

(ii) The pressure in the larger diameter pipe.

(5 marks)

Figure Q3.1 Horizontal water pipe

- Q4 Energy line (EL) is defined as the total head in the system while hydraulic grade line (HGL) is the piezometric head for a certain cross section in a system of a pipe. The correlation between pipe systems and similarity underscores the foundational principles governing fluid mechanics and engineering.
 - (a) Define **THREE** (3) forms of energy develop in a pipe system.

(4 marks)

(b) Draw a correlation graph of EL, HGL and energy development in a pipe system.

(4 marks)

(c) The drag force on a submarine, which is moving on the surface, is to be determined by a test on a model which is scaled down to one-twentieth of the prototype with the speed of 2.1 m/s. The test is to be carried in a towing tank, where the model submarine is moved along a channel of liquid. By using Froude number calculate the speed at which the model should be moved in the towing tank.

(6 marks)

(d) The flow into and out of a loop pipe system is shown in **Figure Q4.1** with the K values for each pipe were given and n = 2. Estimate the flow in each pipe and $\triangle Q$ from first trial by using Hardy Cross Method.

Figure Q4.1 A loop pipe system

(11 marks)

- END OF QUESTIONS -

TERBUKA

Figure APPENDIX A.1

Figure APPENDIX A.2

APPENDIX B

Table APPENDIX B.1

Material	Roughness, ε	
	ft	mm
Glass, plastic	0 (smooth)	
Concrete	0.003-0.03	0.9_9
Wood stave	0.0016	0.5
Rubber,		
smoothed	0.000033	0.01
Copper or		100000
brass tubing	0.000005	0.0015
Cast iron	0.00085	0.26
Galvanized		
iron	0.0005	0.15
Wrought iron	0.00015	0.046
Stainless steel	0.000007	0.002
Commercial		J.002
steel	0.00015	0.045

TERBUKA

APPENDIX C

FORMULA

$$Q = \frac{m}{\rho}$$

$$V = \frac{Q}{A}$$

$$R = \frac{VL}{v}$$

$$\varepsilon = \frac{e}{D}$$

$$Q = \frac{m}{\rho}$$
 $V = \frac{Q}{A}$ $R = \frac{VD}{v}$ $\varepsilon = \frac{e}{D}$ $h_f = \frac{fLV^2}{2gD}$

$$h_i = KQ^r$$

$$n|KQ^{n-1}|$$

$$\boldsymbol{h}_{L} = \boldsymbol{KQ}^{n} \hspace{1cm} \boldsymbol{n} |\boldsymbol{KQ}^{n\text{-}1}| \hspace{1cm} \boldsymbol{\Delta Q} = -\sum \boldsymbol{h}_{L} / \sum \boldsymbol{n} \boldsymbol{h}_{L} = -\sum \boldsymbol{KQ}^{n} / \sum \boldsymbol{n} [\boldsymbol{KQ}^{n\text{-}1}]$$

$$F_{\rm r} = \frac{V}{\sqrt{gL}}$$

$$F_r = \frac{V}{\sqrt{gL}}$$
 $Q = AV \ a_{circle} = \frac{\pi D^2}{4}$ $F = m \ (v_2 - v_1)$

$$F = m (v_2 - v_1)$$

$$Re = \frac{\rho VD}{\mu} = \frac{DV}{v} \qquad F_r = \frac{V}{\sqrt{gL}} \qquad h_f = f\left(\frac{L}{D}\right) \frac{V^2}{2g}$$

$$F_r = \frac{V}{\sqrt{gL}}$$

$$h_f = f \left(\frac{L}{D}\right) \frac{V^2}{2g}$$

$$H = \frac{P}{\gamma} + z + \frac{V^2}{2g}$$
 $h_k = k \frac{v^2}{2g}$ $F = \sqrt{F_x^2 + F_y^2}$ $F_y = \rho g V$

$$h_k = k \frac{v^2}{2g}$$

$$F = \sqrt{{F_x}^2 + {F_y}^2}$$

$$F_y = \rho g V$$

$$F_x = \rho g A x$$

$$F_x = \rho g A \overline{x}$$
 $\phi = \tan^{-1} \frac{F_y}{F_x}$ $BM = \frac{I}{V}$ $W = mg$

$$BM = \frac{I}{V}$$

$$W = mg$$

$$R = \rho g V$$

$$R = \rho gV$$
 $\rho = \frac{M}{V}$ $P = \rho gh$ $\gamma = \rho g$

$$P = \rho g h$$

$$y = \rho g$$

$$V = \sqrt{2gh}$$

$$V = \sqrt{2gh} \qquad \qquad h_L = H - \frac{V_a}{2g} \qquad \qquad F_r = \frac{V}{\sqrt{gL}} \qquad \qquad v = \mu/\rho \qquad \tau = \mu \; (du/dy)$$

$$F_r = \frac{V}{\sqrt{gL}}$$

$$v = \mu/\rho$$

$$\tau = \mu \; (du/dy)$$

$$Q = C_d a \sqrt{2gH}$$
 $m = \rho AV$ $P = F/A$

$$m = \rho AV$$

$$P = F/A$$

$$m = \rho Q$$

$$G = \gamma Q$$

$$A_A V_A = A_B V_B$$

Q=AV
$$m = \rho Q$$
 $G = \gamma Q$ $A_A V_A = A_B V_B$ $F = m \times (V_2 - V_1)$

$$\frac{p_A}{\rho g} + Z_A + \frac{V_A^2}{2g} = \frac{p_B}{\rho g} + Z_B + \frac{V_B^2}{2g}$$