

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2023/2024**

COURSE NAME

MOBILE ROBOTICS

COURSE CODE

: BEJ44703

PROGRAMME CODE

: BEJ

EXAMINATION DATE : JULY 2024

DURATION

: 3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE PROHIBITED TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

PART A

Q1 Consider the following Bayesian filter equation.

$$Bel\left(x_{t}\right) = \eta \ p(z_{t}|x_{t}) \int p(x_{t}|x_{t-1},u_{t}) Bel\left(x_{t-1}\right) dx_{t-1},$$

(a) Evaluate the Bayesian filter equation above and Derive a Kalman Filter equation for a correction function $p(z_t|x_t)$ and a prediction function $\int p(x_t|x_{t-1},u_t)Bel(x_{t-1})dx_{t-1}$,

(10 marks)

(b) Describe the Kalman Filter correction and the prediction function for a mobile robot localization.

(5 marks)

(c) Based on the Kalman Filter equations, write a python programming for mobile robot localization.

(10 marks)

Q2 Consider the following Particle Filter based-on the Bayesian filter equation

$$Bel(x_t) = \eta p(z_t|x_t) \int p(x_t|x_{t-1},u_t) Bel(x_{t-1}) dx_{t-1}$$

(a) Point out the process of particle filter algorithm from the Bayesian filter equation.

(10 marks)

(b) Describe the Particle -filter algorithm for localization.

(6 marks)

(c) Based on the Particle filter algorithm, write a python programming for mobile robot localization

(9 marks)

TERBUKA

Q3 (a) Define the grid Map used for SLAM.

(5 marks)

(b) A Grid Map equation is given by

 $p(m|x_{1:t},z_{1:t})$

Derive a grid map algorithm (include the probability, binary bayers filter) from the equation above.

(10 marks)

(c) Given by the observation sensor data $Z_{1:t}$ and localization data $X_{1:t}$ calculate the belief $Bel(m^{[xy]})$ of each 4 grid map in Table Q3(c).

Table Q3(c)

Hits:4	Hits:6
Miss:6	Miss:4
Hits :2	Hits:7
Miss:8	Miss:3

(10 marks)

Q4 (a) Define A* path-planning.

(2 marks)

- (b) Discuss the process of the Dynamic Window Approaches for the path-planning.

 (3 marks)
- (c) Differentiate the **FIVE** (5) differences between A* and the Dynamic Window Approaches for the path-planning.

(10 marks)

(d) A typical problem of the A* is given by **Figure Q4(d)**. Analyze the reason behind this problems and provide the solutions.

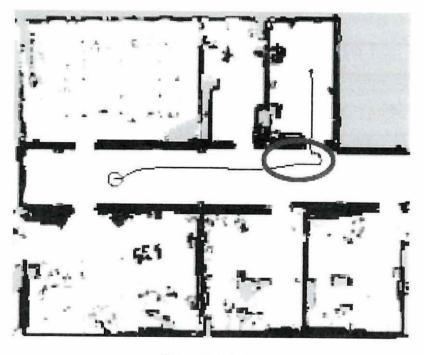


Figure Q4(d)

(10 marks)

TERBUKA

- END OF QUESTIONS -