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Q1 (a)

(b)

The velocity of a rocket is given by:

14 x 10%
14 x 10* — 2100¢|

v(t) = 2000In 9.8t, 0<t<30

Where v is given in m/s and t is given in seconds.

(1) By taking h = 2s, approximate first derivative of v(t) to calculate the acceleration
at t = 16s using 2-point forward, 2-point backward and 3-point central differential

approximation.
(11 marks)

(if)  Find the exact value of the acceleration of the rocket using a scientific calculator.
(2 marks)

(it1) Calculate the absolute error for each method from Q1(a).
(3 marks)

(iv) Identify the best method in approximating the acceleration of the rocket.
(1 mark)

A point A is moving along the curve whose equations is f(x) = 2x? + sin (x). By using
second derivatives for 3-point central and 5-point difference formula with h = 0.1.
Calculate how far A is moving when x = 1.2.

(8 marks)

Q2 According to Kirchhoff’s voltage law, a simple series RL circuit that can consist of a resistor,
an inductor and a power supply can be represented by the following equation.

LS ¢ i = B
g TRI=E®

Given E(1)=120 V,L=3H, R=15Q,i=5.0570 A when t = 0.20 s

(a)

(b)

(c)

Calculate the i(t) between 0.20 s and 0.25 s with an interval of 0.01 s using Euler’s
method.
(7 marks)

Given i = 5.70804 when t = 0.25 s, calculate the i(t) between 0.20 s and 0.25 s with
an interval of 0.01s using finite-different method.
(12 marks)

Investigate the absolute errors at each estimation at the Q2(a) and Q2(b) if the exact
solution is i(t) = 8(1 — e~5%).

(6 marks)
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4 x-2
Q3 The graph for f " x_x dx is shown in Figure Q3.

(a)

(b)

(c)

(d)

Vx
y

Figure Q3: Graph

Approximate the total volume of the shaded area with subintervals of 7 = 10 and n = 15

by using:

(1)  Trapezoidal rule.
(1)  Simpson’s 1/3 rule (with appropriate subintervals).
Calculate the exact solution by using a scientific calculator.

Find the absolute errors for each of the methods in Q3(a).

Determine which method gives the better approximation.
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(12 marks)
(8 mark)
(1 mark)

(3 marks)

(1 mark)
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Q4

(a)

(b)

The temperature distribution u(x,t) of a one-dimensional silver rod is governed by the
heat equation as follows.

du o*u
s 0.5 32z

Given the boundary conditions u(0,t) = t2, u(0.6,t) = 6t + 0.12, for 0 < t < 0.04s

and the initial condition u(x,0)=x(0.8—x) for 0 <x < 0.6mm, analyze the

temperature distribution of the rod with Ax = 0.2mm and At = 0.02s using explicit

method (i.e. Forward Time Central Space (FTCS) finite-difference approximation) in 4

decimal places.
(12 marks)

An elastic string is fixed at both ends and is governed by the wave equation as follows.

o*u 9*u
= e

Where u(x,t) of the displacement of the string with 0 < x <1 and 0 < t < 0.4. The
initial and boundary conditions are as follows.

u(x, 0) = sin (mx)
O o ) = 0125
E(x: ) =

Analyze the displacement of the string using the central time central space (CTCS) explicit
finite-difference approximation with Ax = 0.25cm and 4t = 0.2s in 4 decimal places.
(13 marks)

-END OF QUESTIONS —
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FORMULAE

First Order Numerical differentiation:

2-point forward difference

f'(x) zf(x+hz_f(x)

2-point backward difference
, f(x) — f(x—h)
fre =121

3-point central difference
. (x+h)—f(x—h)
Fiy ~ 1B~

3-point forward difference

=3f(x) +4f(x+h) — f(x+ 2h)
Zh

f'(x) =

3-point backward difference :
- f(x—=2h) —4f(x — h) + 3f(x)
F'e) = o

5-point central difference
5 f(x—2h) —8f(x —h) +8f(x + h) — f(x + 2h))
Fel= 12h

Second Order Numerical differentiation:

3-point central difference formula (second derivative)
" fO—h)—-2f(x) + f(x+h)
£ = —

S-point formula for second derivative
, —f(x — 2R) + 16f (x — h) —30f (x) + 16f (x + h) — f(x + 2h))
fllx) = 57

Lh
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Euler method

Yier = ¥i + hf (x5, 1)

Boundary value problems:

Finite difference method:

! Yaur — Vi P Yiu —2,1'.‘ + Y

. 2h < h?

Numerical Integration:

Trapezoidal rule:

b h n-1
| reade ~ 5[11; +fo +22ﬁ]
=1

Simpson’s % rule:

n/2 (n/2)-1

fbf(.vc)d(;:c)—--%1 fo+fa +4Zfzi—1+2 Z fai
a =1 i=1

Simpson’s % rule:

n/3 (n/3)-1

E 3h
| reode ~ fg+fn+3_zlvsf_z+fu_1)+z > f
i= =1
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