

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2023/2024

COURSE NAME

NUMERICAL METHODS FOR FLUID

DYNAMICS

COURSE CODE

BWA 33203

PROGRAMME CODE :

BWA

EXAMINATION DATE :

JULY 2024

DURATION

3 HOURS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA

☐ Open book

□ Closed book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

TERBUKA

- Q1 (a) Based on the ideas of:
 - (new value) = (old value) + (slope × step size),
 - the slope is given by the first derivative,
 - find the slope at the midpoint of the step size,
 - update the new predictor value using the new slope,

for differential equation $\frac{dy}{dx} = f(x, y)$.

Write the formula of 4th order Runge-Kutta method for:

(i)
$$\frac{dy_1}{dx} = f_1(x, y_1, y_2), \frac{dy_2}{dx} = f_2(x, y_1, y_2).$$

(11 marks)

(ii)
$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, y_3), \frac{dy_2}{dx} = f_2(x, y_1, y_2, y_3), \frac{dy_3}{dx} = f_3(x, y_1, y_2, y_3).$$

(8 marks)

(b) Hence, solve the following set of differential equations using 4^{th} order Runge-Kutta by assuming that $y_1(1) = 4$ and $y_2(1) = 6$. Integrate to x = 1.2 with $\Delta x = 0.2$ (use 4 decimal places).

$$\frac{dy_1}{dx} = y_1$$
, and $\frac{dy_2}{dx} = 4 - y_2 + y_1$.

(11 marks)

Q2 Consider

$$I = \int_{1.5}^{3.5} \int_{2}^{3} (x+y^2) dy \ dx \ .$$

Calculate I using:

(a) trapezoidal rule with $\Delta x = \Delta y = 0.5$.

(10 marks)

(b) 2-point Gauss quadrature, given that $\int_{-1}^{1} f(x)dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$.

(10 marks)

Q3 Given the Simpson 1/3 for function g(x) as follows:

$$\int_{a}^{b} g(x)dx = \frac{\Delta x}{3} \left[g(a) + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} g(a+i\Delta x) + 2 \sum_{\substack{i=1 \ i \text{ even}}}^{n-2} g(a+i\Delta x) + g(b) \right].$$

Evaluate $\int_{0}^{1} \int_{x}^{2x} (x+y) dy dx$ with n=m=4 using Simpson 1/3.

(15 marks)

Q4 T(x, y, t) is the temperature of a heated plate in the form of:

$$\frac{d^2T}{dx^2} + \frac{d^2T}{dy^2} = \frac{dT}{dt},$$

subject to boundary conditions as follows:

$$t = 0$$
:

$$T(x, y, 0) = 0$$
 at $0 \le x \le 1$, and $0 \le y \le 1$,

t > 0:

$$T(x,0,t) = 0$$
, $T(x,1,t) = 100$ at $0 \le x \le 1$,

$$T(0, y, t) = 80, T(1, y, t) = 60 \text{ at } 0 \le y \le 1.$$

Form the matrix obtained from the Crank-Nicolson method.

(15 marks)

- END OF QUESTIONS -