

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2023/2024**

COURSE NAME

ORDINARY DIFFERENTIAL EQUATIONS

COURSE CODE

DAU 34403

PROGRAMME CODE : DAU

EXAMINATION DATE :

JULY 2024

DURATION

3 HOURS :

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE PROHIBITED TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

TERBUKA

CONFIDENTIAL

Q1 (a) A bowl of porridge is placed in a room with temperature of 25°C. The porridge has cooled from 80°C to 40°C after 15 minutes. The process satisfies the Newton's law of cooling that is given by

$$\frac{dT}{dt} = -k(T - T_s),$$

where T is the temperature of the porridge at time t (minute), T_s is the room temperature and k is a constant.

(i) Use separable method to show that the solution of T(t) is given by $T(t) = T_s + Ae^{-kt}$, where $A = e^C$ is a constant.

(5 marks)

- (ii) From Q1(a)(i), determine the temperature of the porridge after 60 minutes. (8 marks)
- (b) The number of bacteria in a bottle of yogurt kept in a fridge is represented by the following differential equation

$$\frac{dP}{dt} = 0.37P,$$

where P(t) is the number of bacteria at time t (hour).

- (i) By integrating the separable equation, find the general solution of P(t). (5 marks)
- (ii) If the initial number of bacteria at 2.00 am (t = 0) is 200, at what time the number of bacteria will reach 1000?

(7 marks)

Q2 (a) Find the solution for the following boundary value problem using the method of undetermined coefficients.

$$4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 2x, y(0) = 0, and y(4) = 0.$$
(11 marks)

(b) Using method of variation of parameters, solve the following non-homogeneous second order differential equation.

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}.$$

(14 marks)

- Q3 (a) Find the Laplace transform for $f(t) = 5 2t^3 + \cos 4t$. (4 marks)
 - (b) Use multiply with t^n property to find the Laplace transform for $f(t) = t \cosh 2t$.

 (4 marks)

CONFIDENTIAL

DAU 34403

- Use first shift theorem to find the Laplace transform for $f(t) = e^{-2t} \sin 3t$. (c) (3 marks)
- Determine the inverse Laplace transform for the following. (d)
 - (i) $\frac{2\pi}{s} \frac{4}{s^2} + \frac{5}{s+1}$.

(3 marks)

(ii)
$$\frac{9s}{s^2+4} - \frac{4}{s^2-4}$$
.

(3 marks)

Use the first shift theorem to obtain the inverse Laplace transform for (e)

$$\frac{3}{(s-9)^4}.$$

(3 marks)

(f) Given

$$F(s) = \frac{3s - 5}{s^2 - 4s + 3}.$$

(i) Express F(s) in partial fraction.

(3 marks)

(ii) Hence, obtain the inverse Laplace transform for F(s).

(2 marks)

Q4 (a) Use Laplace transform to solve the initial value problem

$$y' + y = te^{-t}, \quad y(0) =$$

(10 marks)

(b) (i) Show that,

$$\frac{s^2 - 8}{(s+3)(s^2 - 3s + 2)} = \frac{1}{20(s-3)} + \frac{7}{4(s-1)} - \frac{4}{5(s-2)}.$$

(5 marks)

(ii) Hence, from Q4(b)(i), solve the initial value problem,

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{-3t}$$
, $y(0) = 1$, and $y'(0) = 0$.

$$y(0)=1,$$

(10 marks)

- END OF QUESTIONS -

FORMULAE

Table 1: Laplace and Inverse Laplace Transform

Definition: $L\{f(t)\}$	$= \int_0^\infty f(t)e^{-st} dt = F(s)$
f(t)	F(s)
k	$\frac{k}{s}$ $n!$
$t^n, n = 1, 2,$	$\frac{n!}{s^{n+1}}$
e ^{at}	$\frac{\overline{s^{n+1}}}{1}$
sin at	$\frac{\overline{s-a}}{a}$ $\frac{\overline{s^2+a^2}}{a}$
cos at	$\frac{s}{s^2 + a^2}$
sinh at	$\frac{s^2 + a^2}{s}$ $\frac{s^2 + a^2}{a}$ $\frac{a}{s^2 - a^2}$
cosh at	$\frac{s}{s^2 - a^2}$
First Sh	ift Theorem
$e^{at}f(t)$	F(s-a)
Multip	bly with t^n
$t^n f(t), n = 1, 2,$	$(-1)\frac{d^n F(s)}{ds^n}$
Initial Va	llue Problem
y(t)	Y(s)
y'(t)	sY(s) - y(0) $s^2Y(s) - sy(0) - y'(0)$
y''(t)	$s^{2}Y(s) - sy(0) - y'(0)$

Table 2: Differentiation

$\frac{d}{dx}[k] = 0, \qquad k \text{ is a constant}$	$\frac{d}{dx}[\sec x] = \sec x \tan x$
$\frac{d}{dx}[x^n] = nx^{n-1}$	$\frac{d}{dx}[\csc x] = -\csc x \cot x$
$\frac{d}{dx}[e^x] = e^x$	$\frac{d}{dx}[\cot x] = -\csc^2 x$
$\frac{d}{dx}[\ln x] = \frac{1}{x}$	$\frac{d}{dx}[f(u(x))] = \frac{df}{du}\frac{du}{dx}$
$\frac{d}{dx}[\cos x] = -\sin x$	$\frac{d}{dx}[u \pm v] = \frac{du}{dx} \pm \frac{dv}{dx}$
$\frac{d}{dx}[\sin x] = \cos x$	$\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Table 3: Integration

$\int k dx = kx + C, \qquad k \text{ is a constant}$	$\int \sin ax dx = -\frac{1}{a} \cos ax + C$
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int \cos ax dx = \frac{1}{a} \sin ax + C$
$\int \frac{1}{x} dx = \ln x + C$	$\int e^{ax} dx = \frac{1}{a}e^{ax} + C$
$\int \frac{1}{a+bx} dx = \frac{1}{b} \ln a+bx + C$	$\int udv = uv - \int vdu$

Table 4: Characteristic Equation and General Solution

	Homogeneous Differential Equation Characteristic Equation: a $m = \frac{-b \pm \sqrt{b^2}}{2a}$	$am^2 + bm + c = 0$
Case	Roots of Characteristic Equation	General Solution
1	Real and Distinct: $m_1 \neq m_2$	$y_h(x) = Ae^{m_1x} + Be^{m_2x}$
2	Real and Equal: $m_1 = m_2 = m$	$y_h(x) = (A + Bx)e^{mx}$
3	Complex Roots: $m = \alpha \pm i\beta$	$y_h(x) = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

Table 5: Particular Solution of Nonhomogeneous Equation

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})$
Ceax	$x^r(Pe^{ax})$
$C \cos \beta x$ or $C \sin \beta x$	$x^{r}(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{ax}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{ax}$
$P_n(x)$ $\begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$ or	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x + B_{n-1}x^{n-1} + \dots + B_{n-1}x$
$P_n(x)$ $\begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$ or	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0}) \circ + \\ x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0}) \circ$

Notes: r is the smallest non-negative integer to ensure no alike term between $y_p(x)$ and $y_h(x)$

Table 6: Variation of Parameters Method

Homogeneous solution:
$$y_h(x) = Ay_1 + By_2$$

Wronskian function, $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$
 $u_1 = -\int \frac{y_2 f(x)}{aW} dx + A, \qquad u_2 = \int \frac{y_1 f(x)}{aW} dx + B,$

General solution, $y(x) = u_1 y_1 + u_2 y_2$

Table 7: Partial Fraction

$$\frac{a}{(s+b)(s-c)} = \frac{A}{(s+b)} + \frac{B}{(s-c)}$$

$$\frac{a}{s(s-b)(s-c)} = \frac{A}{s} + \frac{B}{(s-b)} + \frac{C}{(s-c)}$$

$$\frac{a}{(s+b)^2} = \frac{A}{(s+b)} + \frac{B}{(s+b)^2}$$

$$\frac{a}{(s+b)(s^2+c)} = \frac{A}{(s+b)} + \frac{Bs+C}{(s^2+c)}$$