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Q1

Q2

Q3

(a)

(b)

(a)

(b)

(a)

(b)

A bowl of porridge is placed in a room with temperature of 25°C. The porridge has
cooled from 80°C to 40°C after 15 minutes. The process satisfies the Newton’s law of
cooling that is given by

i k(T —T,)
d_t__( — Agh

where T is the temperature of the porridge at time t (minute), T, is the room
temperature and k is a constant.

(1) Use separable method to show that the solution of T'(t) is given by
T(t) =T, + Ae™*,
where A = e is a constant.
(5 marks)

(i)  From Q1(a)(i), determine the temperature of the porridge after 60 minutes.
(8 marks)

The number of bacteria in a bottle of yogurt kept in a fridge is represented by the
following differential equation

dP—-037P
g

where P(t) is the number of bacteria at time ¢ (hour).

(1) By integrating the separable equation, find the general solution of P(t).
(5 marks)

(i) If the initial number of bacteria at 2.00 am (t = 0) is 200, at what time the
number of bacteria will reach 1000?
(7 marks)

Find the solution for the following boundary value problem using the method of

undetermined coefficients.
2

d d
4—y+4—31+y=2x, y(0)=0, and y(4) =0.

dx? dx
(11 marks)
Using method of variation of parameters, solve the following non-homogeneous

second order differential equation.
d’y _dy

e P s P — p2X
%2 5 ix 416y = g°*,
(14 marks)
Find the Laplace transform for f(t) = 5 — 2t3 + cos 4t.
(4 marks)
Use multiply with t™ property to find the Laplace transform for f(t) = t cosh 2t.
(4 marks)
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Q4

(c)

(d)

(e)

(0

(a)

(b)

Use first shift theorem to find the Laplace transform for f(t) = e~2* sin 3t.

(3 marks)
Determine the inverse Laplace transform for the following.
: 2r 4 5
-
(3 marks)
s 9s 4
(&0 s2+4 s2—4
(3 marks)
Use the first shift theorem to obtain the inverse Laplace transform for
2
(5 —9)*
(3 marks)
Given
35 —5
F(s) =—5———.
W
(1) Express F(s) in partial fraction.

(3 marks)

(i)  Hence, obtain the inverse Laplace transform for F(s).

(2 marks)
Use Laplace transform to solve the initial value problem
ol e s y(0) = 2.
(10 marks)
(1) Show that,
s*—8 B 1 " 7 4
(s+3)(s?2—3s+2) 20(s—3) 4(s—1) 5(s—2)
(5 marks)
(11) Hence, from Q4(b)(i), solve the initial value problem,
@—3@+2 =g (0)=1 and ‘(0)=0
dxz “dx Y S ' 2 i =
(10 marks)
- END OF QUESTIONS -
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FORMULAE

Table 1: Laplace and Inverse Laplace Transform

Definition:  L{f(£)} = [ f(t)e ™t dt = F(s)
(@) E(s)
k k
S
= n!
e =2 =t
eat 1
Ss—a
. a
sinat 32 1 az
S
cosat =7 & aF
_ a
sinh at =y
s
cosh at o
First Shift Theorem
e f(t) l F(s—a)
Multiply with t™
d™F(s)
PR =12, -
f@®.n i
Initial Value Problem
y(t) Y(s)
) sY(s) —y(0)
y"(t) s?Y(s) — sy(0) —y'(0)
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Table 2: Differentiation

Likl=0, ki tant = el = e ws
a[ |=0, is a constan ; ——l[secx] = secxtanx
e ny — n—1 —_— — —
dxix ] =mx = [cosec x] cosecx cotx
E[ex] =e* %[cotx] = —cosec:x
d df du
——[Inlx]] = )] =-—
d[ (R d[+]_du+dv
= [cosx] = —sinx k] ==t
d T d ] = dv+ du
Z sinx] = cosx gl =u— v
d ru Uﬂ—uﬂ
— [tanx] = sec?x Bl L) I T ™
dx[ ] dx [U] 2

Table 3: Integration

[

dx =kx+C, k is a constant
x

1
fsinaxdx = —Ecosax+C

ekl

Roda = c
fx * n+1+

1
fcosaxdx =Esinax+C

i
f—dx =In|x|+C
X

1
fe“xdx =

a

I

1.
a+ bx

1
dx = E]nla +bx|+C

—e™® 4+ C
[udv:uv—fvdu

Table 4: Characteristic Equation and General Solution

Homogeneous Differential Equation:

Characteristic Equation:

ay”" +by'+cy=0

am?+bm+c=0

Complex Roots: m = a + if§

—b +Vb? — 4ac
m= 2a
Case Roots of Characteristic Equation General Solution
1 Real and Distinct: m; # m, yp(x) = Ae™* + Be™2*
4 Real and Equal: my =m, =m Vu(x) = (A + Bx)e™
3

yp(x) = e (A cos Bx + B sin fx)
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Table 5: Particular Solution of Nonhomogeneous Equation

Nonhomogeneous Differential Equation:  ay" + by’ + cy = f(x)

f(x) ¥p ()
Fu(x) = Apx™ + Ap_x™ 1 + r n A=T 3 .
% Lol i, x"(Bpx™ + Bp_yx™ 1 + -+ Byx + B,)
Cetx x7 (Pe®™)
C cos x or C sin fx x" (P cos fx 4+ Q sin fx)
Biy)e™ X" (Bx™ + By qx™ ' 4 v+ By 4 By)e™
cos fix x"(Bpx™ + By x™ 1 + -+ B1x + By) cos Bx
B (x) {sin Bx or 5

x"(Bpx™ + By_yx™ 1 4 -+ Byx + B,) sin Bx

Notes: 7 is the smallest non-negative integer to ensure no alike term between
Yp(x) and yp (x)

Table 6: Variation of Parameters Method

Homogeneous solution:  y,(x) = Ay, + By,

Wronskian function, W = yl, yz:l = V¥ — VaV1
Y1 Y2
X X
ulz_fyzf()dx% uzzfylf()dxw'
aW a

General solution, y(x) = u;y; + u,y,

Table 7: Partial Fraction

a A B

(s+b)(s——c)=(s+b)+(s—c)
a A B C

s(s—b)(s—c)=Fs—+(s—b)+(s—c)
a A B

G+BE 1)  [5rb)
a A Bs+C

G+bis? +6) G+ @ (Fid)
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