

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

INTRODUCTION TO CHEMICAL

ENGINEERING TECHNOLOGY / FOUNDATION OF CHEMICAL ENGINEERING TECHNOLOGY

COURSE CODE

DAK 10202 / DAK 12302

PROGRAMME CODE

1 DAK

EXAMINATION DATE

DECEMBER 2016 / JANUARY 2017

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

TERBUKA

ANSWERS ALL QUESTIONS IN SECTION A AND TWO (2)
QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

SECTION A

Q1 (a) Identify the types of hazards for the warning signs based on Figure Q1 (a).

(9 marks)

(b) Summarizes **SEVEN (7)** steps involved in Hazards and Operability (HAZOP) studies.

(7 marks)

(c) Complete the table below with all the relevant consequences for all **THREE** (3) types of chemical plant accidents below.

Table 1: Types of chemical plant accidents

Type of chemical plant accidents	Probability of occurrence	Potential for fatalities	Potential for economic loss
Toxic release			
Fire			
Explosion			

(9 marks)

Q2 (a) Define bioremediations.

(3 marks)

(b) List **TWO (2)** types of cells in microbial divisions and give **TWO (2)** examples for each type.

(6 marks)

(c) There are **TWO** (2) main types of in-situ bioremediation. Differentiate both types.

TERBUKA

(6 marks)

(d) Phytoremediation is the use of plants to clean up potentially damaging spills. Explain **FIVE** (5) classification of phytoremediation based on the contaminant fate.

(10 marks)

CONFIDENTIAL

DAK 10202 / DAK 12302

SECTION B

Q3 (a) Solve the value of E, C3 and C4 based on Figure Q3 (a).

(10 marks)

- (b) One hundred kilograms per minute of a mixture containing 60% oil and 40% water by mass are fed into a settling tank that operates at a steady state. TWO(2) products streams emerge from the settler, the top contains pure oil, and the bottom is 90% water by mass.
 - i. Construct a diagram for this process.

(6 marks)

ii. Calculate the flowrate for the TWO (2) product streams.

(9 marks)

- Q4 (a) Define:
 - (i) Element
 - (ii) Compound
 - (iii) Accuracy

(6 marks)

(b) Identify the **SEVEN** (7) base of SI units.

Table 2: The seven base SI units

Quantity	Unit
Length	
Mass	
Temperature	
Time	
Amount of Substance	
Luminous Intensity	
Electric Current	

(7 marks)

(c) Consider separate 100.0 gram samples of each of the following:

H₂O N₂O C₃H₆O₂ CO₂ 18gm 34gm 24gm 24gm

Solves them from the lowest to the highest percent oxygen by mass.

(12 marks)

TERBUKA

Q5	(a)	(i)	Define chemical engineering	;.	(2 marks)	
		(ii)	State FIVE (5) field chemical	al engineer does for a living.	(5 marks)	
	(b)	Briefl	y describe FOUR (4) roles of	chemical engineering technolog	gist. (8 marks)	
	(c)	Expla	in FIVE (5) future challenges		(10 marks)	
Q6	(a)	Define	e process flow diagram (PFD).		(2 marks)	
	(b)	Explai	in FOUR (4) purposes for draw	wing process flow diagram (PF	D). (8 marks)	
	(c)	(i)	Briefly explain about chemic	al process technology.	(5 marks)	
		(ii)	(ii) Relate the equipment used in the operation of chemical process technology.			
			Operation	Equipment		

-END OF QUESTIONS -

TERBUKA

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2016/2017

COURSE NAME

: INTRODUCTION TO CHEMICAL ENGINEERING TECHNOLOGY

PROGRAMME CODE: 1 DAK

COURSE CODE

: DAK 10202

Figure Q1 (a)

