

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

: FLUID MECHANICS AND

HYDRAULICS

COURSE CODE

: DAB 20103

PROGRAMME CODE : DAB

EXAMINATION DATE : DECEMBER 2016 / JANUARY 2017

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

TERBUKA

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

KHAIRUL ZAMAN BIN ABDUL MALEK Jabatan Kejuruteraan Awarn Pusat Penyajian Digipma

iversiti Tun Hussein One Malaysia

Q1 (a) Expl	ain about	surface 1	tension.
-------------	-----------	-----------	----------

(4 marks)

(b) Compare the characteristics between wetting fluid and nonwetting fluid.

(4 marks)

(c) A liquid compressed in a cylinder has a volume of 2 m^3 at 2 MN/m^2 and a volume reduce about 15 % at 4 MN/m^2 . Determine bulk modulus of elasticity.

(5 marks)

(d) Compute the capillary rise in the tube for a mercury-air-glass interface with 140 $^{\circ}$ if the tube diameter is 0.3 cm and surface tension force is 0.5 N/m. ($\rho_{mercury} = 13500 \text{ kg/m}^3$).

(7 marks)

- Q2 (a) Describe about simple U-tube manometer as a pressure measurement device.

 (4 marks)
 - (b) Compare specifications between bourdon gauge and transducer. (4 marks)
 - (c) Refer **Figure Q2(c)**, analyze pressure at A in kN/m² if $h_1 = 100$ cm, $h_2 = 240$ cm and $\rho_{mercury} = 13500 \text{ kg/m}^3$. (12 marks)

Q3	(a)	Explain about bouyancy concept in Archimedes principle.	(4 marks)
	(b)	Sketch diagrams according to the situations as below: i) Distance of gravity center greater than buoyancy center	(2 marks)
		ii) Distance of buoyancy center greater than gravity center	(2 marks)
	(c)	A 13000 kg barrel with 4 m diameter and 6 m height was put inside consists raw water was stabilized and found floating inside the v Determine as below:	a tank that vater tank.
		i) Volume of water displaced	
			(4 marks)
		ii) Depth of barrel inside the water tank	(4 marks)
		iii) Distance from center of gravity to center of buoyancy	(4 marks)
Q4	(a)	List four (4) assumptions for a fluid according to Bernoulli's equation.	(4 marks)
	(b)	Explain the application of pitot tube in Bernoulli Theorem.	(4 marks)
	(c)	Calculate the water velocity that entered the a closed tank from a rese pressure inside the tank is -160 kN/m^2 and water level inside the reserve higher from the tank. Ignore the friction loss.	rvoir. The oir is 10 m (4 marks)

(d) Diameter of a pipe at point A change uniformly from 8 cm at 4 m datum level to 4 cm at 2 m datum level at point B. The pressure and velocity at A are 55 kN/m² and 2 m/s. Ignoring losses, analyze pressure at B.

(8 marks)

3

CONFIDENTIAL

Q5	(a)	Explain	briefly	about	minor	losses	in pipe.
----	-----	---------	---------	-------	-------	--------	----------

(5 marks)

(b) Sketch three (3) situations of head entrance loss.

(3 marks)

(c) Refer **Table Q5(c)** and **Figure Q5(c)**, determine the head loss due to friction when an oil flowing through a galvanized iron pipe at a velocity of 300 cm/s. The pipe is 600 m long and has a diameter of 60 cm. ($v = 1.31 \times 10^{-6} \text{ m}^2/\text{s}$).

(6 marks)

(d) Refer **Table Q5(d)**, analyze the flow rate of oil in the cast iron pipe. Energy head loss is 2500 mm is occurred in 5 cm diameter and 600 cm length.

(6 marks)

Q6 (a) Define the meaning of pipes in series.

(2 marks)

(b) Explain **three** (3) important principles that applicable in solving pipes in parallel problems.

(6 marks)

(c) Determine the absolute viscosity of the medium lubricating oil is pumped through 300 m of horizontal 50 mm pipe at the rate of 0.00114 m³/s and the drop in pressure is 200 kPa. (specific gravity: 0.86).

(6 marks)

(d) Evaluate the head lost in pipe for an oil flows through 3000 m of 300 mm cast iron pipe at the rate of $0.0444 \text{ m}^3/\text{s}$. Oil of absolute viscosity is 0.101 N.s/m^2 and specific gravity is 0.85.

(6 marks)

-END OF QUESTIONS-

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2016/2017

COURSE NAME

: FLUID MECHANICS AND HYDRAULICS

PROGRAMME CODE: DAB

COURSE CODE : DAB 20103

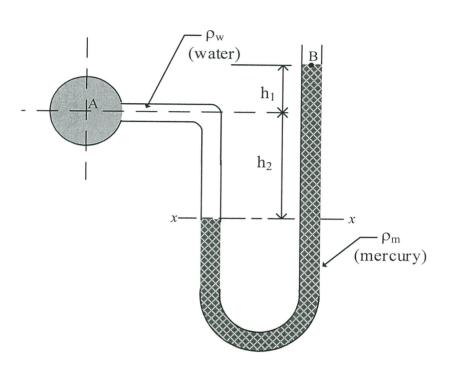


Figure Q2(c)

Table Q5(c)

Material	Alagalista Daniel
iviaterial	Absolute Roughness, e (mm)
Glass	0.0
Concrete	3
Galvanized Iron	0.15

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2016/2017

COURSE NAME : FLUID MECHANICS AND HYDRAULICS

PROGRAMME CODE: DAB

COURSE CODE

: DAB 20103

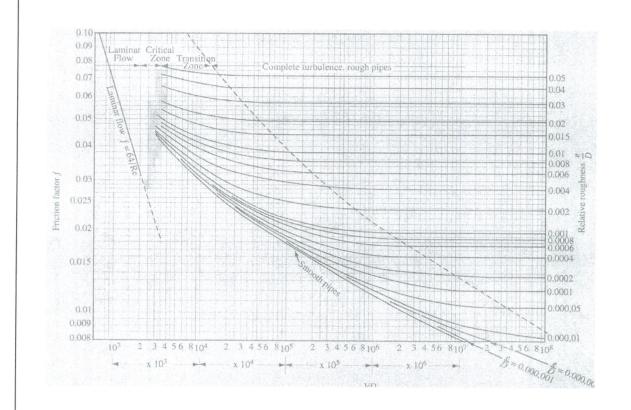


Figure Q5(c)

Table Q5(d)

Item	Value		
$ m f_{cast\ iron}$	0.035		
Kinematic viscosity, v	$5 \times 10^{-4} \text{ m}^2/\text{s}$		
Roughness of cast iron pipe, e	0.25 mm		

CONFIDENTIAL