UNIVERSITI TUN HUSSEIN ONN MALAYSIA # **FINAL EXAMINATION** SEMESTER I **SESSION 2016/2017** COURSE NAME : ELECTRONICS COURSE CODE : DAE 21303 PROGRAMME : 2 DAE EXAMINATION DATE : DECEMBER 2016 / JANUARY 2017 **DURATION** : 2 HOURS 30 MINUTES INSTRUCTION : ANSWER FOUR (4) QUESTIONS **ONLY** THIS OUESTION PAPER CONSISTS OF NINE (9) PAGES Q1 (a) Describe the difference between n-type and p-type semiconductor materials. (4 marks) (b) Determine the current I for each of the configuration of **Figure Q1(b)** using 2^{nd} approximate equivalent model for the diode. (7 marks) - (c) A full-wave bridge rectifier with a 120 V_{rms} sinusoidal input has a load resistor of $1 \text{ k}\Omega$. - (i) If silicon diodes are employed, what is the dc voltage available at the load? - (ii) Determine the required PIV rating of each diode. - (iii) Find the maximum current through each diode during conduction. - (iv) What is the required power rating of each diode? (8 marks) (d) Figure Q1(d) shows a clamper circuit. Analyze and sketch the output voltage V_o . Assume that V_k for Ge is 0.3 V. (6 marks) Q2 (a) Name and explain three (3) applications of diodes. (6 marks) (b) With the aid of a block diagram, explain briefly the functions of each block of a basic power supply unit and sketch the waveforms at each output if the input is a sinusoidal waveform. (11 marks) - (c) For the zener diode network of Figure Q2(c). Determine - (i) The load voltage, V_L - (ii) The load current, I_L - (iii) The series resistor current, I_R - (iv) The zener diode current, I_Z (8 marks) **TERBUKA** Q3 (a) In what **two (2)** states of operation when a transistor is used as a switch? (2 marks) (b) Draw the output characteristic (I_C versus V_{CE}) for the common-emitter configuration. Then using these curves, show where the three operating regions of the transistor. (5 marks) (c) A transistor has the following currents: Emitter current $I_E = 3.2$ mA and base current $I_B = 20$ μ A. Solve for α_{dc} , β_{dc} and collector current I_C . (6 marks) (d) Draw a DC load line for the transistor circuit in **Figure Q3(d)** and indicate the values of $I_{C(sat)}$, $V_{CE(off)}$, I_{CQ} , and V_{CEQ} on the load line. (12 marks) - Q4 (a) Determine the following for the voltage divider configuration of Figure Q4(a). - (i) The dc base current, I_B - (ii) The dc collector current, I_C - (iii) The dc collector-emitter voltage, V_{CE} - (iv) The dc emitter voltage, V_E - (v) The dc base voltage, V_B - (vi) The dc collector voltage, V_C (12 marks) - (b) For the amplifier circuit shown in **Figure Q4(b)**, draw the ac equivalent circuit using hybrid model and determine the followings if $\beta = 200$: - (i) The input impedance, Z_i - (ii) The output impedance, Z_o - (iii) The voltage gain, A_V - (iv) The output voltage, v_0 (13 marks) - Q5 (a) For the JFET self-bias common-source amplifier of Figure Q5(a), - (i) Sketch the transfer curve for the device. - (ii) Superimpose the network equation on the same graph. - (iii) Determine I_{DO} and V_{GSO}. - (iv) Calculate V_{DS} , V_{D} , V_{G} , and V_{S} . (15 marks) - (b) For the JFET Voltage-Divider common-source amplifier of **Figure Q5(b)**. Determine the followings if $V_{GSO} = -0.95 \text{ V}$: - (i) Input impedance, Z_i - (ii) Output impedance, Z_o - (iii) Output voltage, V_0 if $V_i = 20 \text{ mV}$ Given: $$g_m = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{V_{GS_Q}}{V_P} \right)$$ (10 marks) - Q6 (a) With the aid of diagrams, state and explain the **two (2)** conditions of oscillation. (6 marks) - (b) For the oscillator circuit in **Figure Q6(b)**, determine the: - (i) frequency of oscillation - (ii) feedback factor, β and the value of the voltage gain, A_v . - (iii) new value of L for the circuit to oscillates at 800 kHz. (8 marks) - (c) The 555 timer of Figure Q6(c) has $R_1 = 20 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, and $C = 0.047 \mu\text{F}$. - (i) Calculate the frequency of the output signal. - (ii) Determine the duty cycle - (iii) Draw the output waveform (11 marks) - END OF QUESTION - **CONFIDENTIAL** SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAE COURSE CODE: DAE 21303 Figure Q1(b) Figure Q1(d) **≥**10 Ω SEMESTER/SESSION: SEM I/2016/2017 **COURSE NAME** : ELECTRONICS PROGRAMME: 2 DAE COURSE CODE: DAE 21303 SEMESTER/SESSION : SEM I/2016/2017 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAE COURSE CODE: DAE 21303 ### Figure Q4(a) SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME : ELECTRONICS PROGRAMME : 2 DAE COURSE CODE: DAE 21303 # **CONFIDENTIAL** SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME : ELECTRONICS PROGRAMME : 2 DAE COURSE CODE: DAE 21303 ### Figure Q6(b)