

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION** SEMESTER I **SESSION 2016/2017**

COURSE NAME

: ELECTRONICS

COURSE CODE

: DAE 21303

PROGRAMME

: 2 DAE

EXAMINATION DATE : DECEMBER 2016 / JANUARY 2017

**DURATION** 

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS

**ONLY** 



THIS OUESTION PAPER CONSISTS OF NINE (9) PAGES

Q1 (a) Describe the difference between n-type and p-type semiconductor materials. (4 marks)

(b) Determine the current I for each of the configuration of **Figure Q1(b)** using  $2^{nd}$  approximate equivalent model for the diode.

(7 marks)

- (c) A full-wave bridge rectifier with a 120  $V_{rms}$  sinusoidal input has a load resistor of  $1 \text{ k}\Omega$ .
  - (i) If silicon diodes are employed, what is the dc voltage available at the load?
  - (ii) Determine the required PIV rating of each diode.
  - (iii) Find the maximum current through each diode during conduction.
  - (iv) What is the required power rating of each diode?

(8 marks)

(d) Figure Q1(d) shows a clamper circuit. Analyze and sketch the output voltage  $V_o$ . Assume that  $V_k$  for Ge is 0.3 V.

(6 marks)

Q2 (a) Name and explain three (3) applications of diodes.

(6 marks)

(b) With the aid of a block diagram, explain briefly the functions of each block of a basic power supply unit and sketch the waveforms at each output if the input is a sinusoidal waveform.

(11 marks)

- (c) For the zener diode network of Figure Q2(c). Determine
  - (i) The load voltage,  $V_L$
  - (ii) The load current, I<sub>L</sub>
  - (iii) The series resistor current, I<sub>R</sub>
  - (iv) The zener diode current, I<sub>Z</sub>

(8 marks)

**TERBUKA** 

Q3 (a) In what **two (2)** states of operation when a transistor is used as a switch? (2 marks)

(b) Draw the output characteristic ( $I_C$  versus  $V_{CE}$ ) for the common-emitter configuration. Then using these curves, show where the three operating regions of the transistor.

(5 marks)

(c) A transistor has the following currents: Emitter current  $I_E = 3.2$  mA and base current  $I_B = 20$   $\mu$ A. Solve for  $\alpha_{dc}$ ,  $\beta_{dc}$  and collector current  $I_C$ .

(6 marks)

(d) Draw a DC load line for the transistor circuit in **Figure Q3(d)** and indicate the values of  $I_{C(sat)}$ ,  $V_{CE(off)}$ ,  $I_{CQ}$ , and  $V_{CEQ}$  on the load line.

(12 marks)

- Q4 (a) Determine the following for the voltage divider configuration of Figure Q4(a).
  - (i) The dc base current, I<sub>B</sub>
  - (ii) The dc collector current, I<sub>C</sub>
  - (iii) The dc collector-emitter voltage, V<sub>CE</sub>
  - (iv) The dc emitter voltage, V<sub>E</sub>
  - (v) The dc base voltage, V<sub>B</sub>
  - (vi) The dc collector voltage, V<sub>C</sub>

(12 marks)

- (b) For the amplifier circuit shown in **Figure Q4(b)**, draw the ac equivalent circuit using hybrid model and determine the followings if  $\beta = 200$ :
  - (i) The input impedance, Z<sub>i</sub>
  - (ii) The output impedance, Z<sub>o</sub>
  - (iii) The voltage gain, A<sub>V</sub>
  - (iv) The output voltage,  $v_0$

(13 marks)



- Q5 (a) For the JFET self-bias common-source amplifier of Figure Q5(a),
  - (i) Sketch the transfer curve for the device.
  - (ii) Superimpose the network equation on the same graph.
  - (iii) Determine I<sub>DO</sub> and V<sub>GSO</sub>.
  - (iv) Calculate  $V_{DS}$ ,  $V_{D}$ ,  $V_{G}$ , and  $V_{S}$ .

(15 marks)

- (b) For the JFET Voltage-Divider common-source amplifier of **Figure Q5(b)**. Determine the followings if  $V_{GSO} = -0.95 \text{ V}$ :
  - (i) Input impedance, Z<sub>i</sub>
  - (ii) Output impedance, Z<sub>o</sub>
  - (iii) Output voltage,  $V_0$  if  $V_i = 20 \text{ mV}$

Given:

$$g_m = \frac{2I_{DSS}}{|V_P|} \left( 1 - \frac{V_{GS_Q}}{V_P} \right)$$

(10 marks)

- Q6 (a) With the aid of diagrams, state and explain the **two (2)** conditions of oscillation. (6 marks)
  - (b) For the oscillator circuit in **Figure Q6(b)**, determine the:
    - (i) frequency of oscillation
    - (ii) feedback factor,  $\beta$  and the value of the voltage gain,  $A_v$ .
    - (iii) new value of L for the circuit to oscillates at 800 kHz.

(8 marks)

- (c) The 555 timer of Figure Q6(c) has  $R_1 = 20 \text{ k}\Omega$ ,  $R_2 = 10 \text{ k}\Omega$ , and  $C = 0.047 \mu\text{F}$ .
  - (i) Calculate the frequency of the output signal.
  - (ii) Determine the duty cycle
  - (iii) Draw the output waveform

(11 marks)



- END OF QUESTION -

**CONFIDENTIAL** 

SEMESTER/SESSION: SEM I/2016/2017

COURSE NAME

: ELECTRONICS

PROGRAMME: 2 DAE COURSE CODE: DAE 21303





Figure Q1(b)







Figure Q1(d)

**≥**10 Ω

SEMESTER/SESSION: SEM I/2016/2017

**COURSE NAME** 

: ELECTRONICS

PROGRAMME: 2 DAE COURSE CODE: DAE 21303





SEMESTER/SESSION : SEM I/2016/2017

COURSE NAME

: ELECTRONICS

PROGRAMME: 2 DAE COURSE CODE: DAE 21303



### Figure Q4(a)



SEMESTER/SESSION: SEM I/2016/2017

COURSE NAME : ELECTRONICS

PROGRAMME : 2 DAE COURSE CODE: DAE 21303



# **CONFIDENTIAL**

SEMESTER/SESSION: SEM I/2016/2017

COURSE NAME : ELECTRONICS

PROGRAMME : 2 DAE COURSE CODE: DAE 21303



### Figure Q6(b)

