

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2014/2015

COURSE NAME

COMMUNICATION

: ENGINEERING

COURSE CODE

: DAE 32603

PROGRAMME

: 3 DAE

EXAMINATION DATE

: DECEMBER 2014/ JANUARY 2015

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

Q1	(a)		lectromagnetic wave travels from the source to the destination i m of communication.	n a complete		
		(i)	Explain each element of the communication system.	(4 marks)		
		(ii)	Sketch the block diagram of a transmitter.	(2 marks)		
	(b)	There	e are two (2) types of medium in electronic communication sy	stem.		
		(i)	State both types.	(2 marks)		
		(ii)	Gives an example of each type as in Q1(b)(i).	(2 marks)		
	(c)	With transn	reference to Table Q1(c) , the Super High Frequency (SH mitted from an antenna with Signal to Noise Ratio (SNR) of 20	F) signal is 0 dB.		
		(i)	State two (2) applications of SHF.	(2 marks)		
		(ii)	Calculate the SHF bandwidth.	(2 marks)		
		(iii)	Calculate the channel capacity of the signal.	(2 marks)		
		(iv)	From your point of view, shows what happens to the changif the SNR is increased to 30dB?	nel capacity		
				(3 marks)		
	(d)	Signals travel in different ways. Explain with the aid of diagrams thre of transmission modes.				
				(6 marks)		

Q2	(a)	ampli	an input to a conventional AM modulator is a 700 kHz c tude of 40 V_p . The second input is a 25 kHz modulating signal tient amplitude to cause a change in the output wave of \pm mine;	al that is of
		(i)	Modulation coefficient, m.	(2 marks)
		(ii)	Index modulation percentage, M	(1 marks)
		(iii)	Upper and lower side frequency amplitude, V_{USB} and V_{LSB} .	(1 marks)
		(iv)	Frequency limit for upper and lower sideband (f_{USB} and f_{LSB}),	(2 marks)
		(v)	Bandwidth, BW.	(1 marks)
		(vi)	The total power of the AM wave, P_T , if load resistance $R_L = 7$	5 Ω. (4 marks)
		(vii)	Sketch the output spectrum for this AM DSBFC (Double Sid Carrier).	eband Full
				(3 marks)
	(b)		ed Radio Frequency (TRF) receiver is to be designed with a sinusing a 10μH inductor.	ngle tuned
		(i)	Calculate the capacitance range of the variable capacitor requestune from 550 kHz to 1550 kHz.	ired to
			talle from 550 kHz to 1550 kHz.	(5 marks)
		(ii)	The ideal 10 kHz bandwidth, BW is to occur at 1100 kHz. Detective the required selectivity, Q.	etermine
				(2 marks)
		(iii)	Calculate the bandwidth, BW of this receiver at 550 kHz and kHz.	1550
				(4 marks)

Q3	(a)		nency modulation (FM) is considered to be superior to amplitudation (AM).	de
		(i)	Give three (3) advantages of frequency modulation (FM).	(3 marks)
		(ii)	Give two (2) disadvantages of frequency modulation (FM).	(2 marks)
	(b)		M signal, $v_{FM}(t) = 22 \sin(4\pi \times 10^8 t - 1.5 \cos 7\pi \times 10^3 t)$, is a antenna. By referring to Table Q3(b) , determine the following	
		(i)	Total power, P _T .	(1 mark)
		(ii)	Peak frequency deviation, Δf .	(3 marks)
		(iii)	Deviation sensitivity (kf), if 300 mV is require to achieved Q3(b)(ii).	
		(iv)	Amplitude spectrum voltages.	(2 marks) (5 marks)
		(v)	Bandwidth using Bessel table.	(1 mark)
		(vi)	Approximate bandwidth by Carson's rule.	(1 mark)
		(vii)	Sketch the FM signal spectra.	(3 marks)
	(c)	List fo	ur (4) types of FM demodulator circuits that you know.	(4 marks)

Q4 (a) Transmission line is a medium connection between transmitter to receiver in communication system. List **four (4)** types of transmissions line.

(4 marks)

- (b) In general term, noise can be defined as interference or interruption.
 - (i) Explain the definition of Electrical Noise

(2 marks)

(ii) Differentiate between the correlated and uncorrelated noise.

(4 marks)

(iii) Uncorrelated noise divided into two general categories, external and internal. State **two** (2) primary source of external noise and **two** (2) primary source of internal noise.

(4 marks)

(c) Determine the overall noise factor and noise figure for a three cascaded amplifiers as shown in **Figure Q4 (c)**. Then, find the input Signal to Noise Ratio (SNR) in decibel (dB) at the initial stage if the output SNR to the whole system is 53 dB.

(11 marks)

Q5	(a)	the	e characteristics of radio wave are almost similar to the light wave reflection, the refraction and the diffraction. Explain briefly racteristics mentioned.	
	(b)	A g	round wave is a radio wave that travels along earth's surface. Gi	ve:
		(i)	Two (2) advantages of ground wave propagation.	(2 marks)
		(ii)	Three (3) disadvantages of ground wave propagation.	(3 marks)
	(c)	heig	antenna is to be installed to receive a LOS wave transmitted from the antenna located at a distance of 90 km from this installation necessary height of the receiving antenna in km.	
				(4 marks)
	(d)	angl	ubmarine under the sea level sends a signal to a mainland state of 63.5° against the water surface. If the sea water has $\mathcal{E}_{r1} = 12$ the air has $\mathcal{E}_{r2} = 1$, $\mu_{r2} = 6.5$. Determine.	
		(i)	Sea water refraction index.	(2 marks)
		(ii)	Air refraction index.	(2 marks)
		(iii)	Angle of refraction.	(2 marks)
		(iv)	The critical angle.	(2 marks)
		(v)	The critical angle if the ratio between n_1 : n_2 is 1:20.	(2 marks)

Q6	(a)	forn quar	enna array is formed when two or more antenna elements are on a single antenna. Antenna element is an individual radiator suggester wave dipole. Driven and parasitic are the two (2) types of sinna array.	ch as half or
		(i)	Explain the function and the length of driven and parasitic e	lement. (6 marks)
		(ii)	Sketch the diagram of antenna array.	(3 marks)
	(b)	elect	enna polarization is the direction in space of electric vectormagnetic wave from the antenna. List three (3) types rizations.	
	(c)	and	ansmission line connection, a parallel wire cable has inductance capacitance of 70 pF/m at 900MHz. The radius conductor of 4 mm and the relative permittivity (ϵ_r) of the insulation is 2.23.	the cable is
		(i)	Line impedance of the cable.	(2 marks)
		(ii)	Distance between conductors.	(3 marks)
		(iii)	Velocity factor.	(2 marks)
		(iv)	Propagation velocity of the cable.	(2 marks)
		(v)	Wavelength in free space.	(2 marks)
		(vi)	Wavelength while travelling through the coaxial cable.	(2 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2014/2015

PROGRAMME: 3 DAE

COURSE NAME

: COMMUNICATION ENGINEERING COURSE CODE: DAE 32603

Table Q1(c): Frequency Allocations

	T
Designation	Frequency. Range
	(Hz)
ELF	30 – 300
VF	300 – 3 K
VLF	3 K – 30 K
LF	30 K – 300 K
MF	300 K – 3 M
HF	3 M – 30 M
VHF	30 M -300 M
UHF	300 M – 3 G
SHF	3 G – 30 G
EHF	30 G – 300 G

Table Q3(b): Bessel Table

Modulation	Carrier	Sidebands									
index	J ₀	J ₁	72	<i>J</i> ₃	J ₄	<i>J</i> ₅	<i>J</i> ₆	J ₇	J ₈	J ₉	J ₁₀
0.0	1.00	_	_		Name of the last o			_	_		_
0.25	0.98	0.12			*****			_			
0.5	0.94	0.24	0.03	*****		_	-		_		-
1.0	0.77	0.44	0.11	0.02		-					
1.5	0.51	0.56	0.23	0.06	0.01	_					
2.0	0.22	0.58	0.35	0.13	0.03	_	-			_	_
2.5	-0.05	0.50	0.45	0.22	0.07	0.02		-			
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	-		-	
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	_	_	_
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.06	0.02		_
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	_
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02
8.0	0.17	0.23	-0.11	-0.29	0.10	0.19	0.34	0.32	0.22	0.13	0.06

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2014/2015

COURSE NAME

: COMMUNICATION ENGINEERING

PROGRAMME: 3 DAE COURSE CODE: DAE 32603

FIGURE Q4 (c)

List of formula:

1. Ganeral equation for Frequency Modulation

$$v_{FM} = V_c \cos[\omega_c t + \beta \sin(\omega_m t)]$$

2. Formula for line impedance of coaxial and parellel wire cable.

$$Z_0 = \frac{138}{\sqrt{k}} \log \frac{d_1}{d_2}$$

$$Z_0 = \frac{276}{\sqrt{k}} \log \frac{d}{r}$$