

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2023/2024

COURSE NAME

: CIVIL ENGINEERING MATERIAL

COURSE CODE

: BFC 10502

PROGRAMME CODE

: BFF

EXAMINATION DATE :

JANUARY / FEBRUARY 2024

DURATION

: 2 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

TERBUKA

CONFIDENTIAL

BFC 10502

- Q1 (a) Cement is the main material in the concrete making. Selection of the correct cement type plays an important role in producing concrete with good quality. Recommend the suitable cement type for the following construction.
 - (i) Residential building
 - (ii) Brickworks
 - (iii) Dam
 - (iv) Precast concrete
 - (v) Wastewater treatment plant

(5 marks)

(b) Bricks are commonly used as a building envelope or partition wall in building construction. Specify the types of bricks available in the Malaysia market.

(5 marks)

(c) State the differences between fired clay bricks and unfired clay bricks. Suggest a brick that are suitable in reducing the corbon footprint and environmentally friendly.

(7 marks)

(d) **Table Q1.1** shows the results for the water absorption and compression test of bricks. Based on the table, answer questions (i) and (ii).

Table Q1.1 Water absorption and compression test results

Brick no.	Length (mm)	Width (mm)	Depth (mm)	Mass dry brick (kg)	Mass wet brick (kg)	Maximum force (kN)
_ 1	214	98	70	2.5	2.84	311
2	212	98	70	2.49	2.81	300
3	212	99	69	2.46	2.81	331

(i) Calculate the average water absorption of brick in percent.

(4 marks)

(ii) Calculate the average compressive strength of brick in N/mm².

(4 marks)

Q2 (a) Table Q2.1 shows the result of sieve analysis for fine aggregate. Based on the table, answer question (i) and (ii).

Table Q2.1 Fine aggregate sieve analysis

Sieve size (mm)	Mass retained (g)	Percentage retained (%)	Cummulative percentage retained (%)	Cummulative percentage passing (%)
5	0	0	0	
2.36	30	15	15	
1.18	42	21	36	
0.6	40	20	56	
0.3	48	24	80	
0.15	34	17	97	
Pan	6	3	100	

(i) Calculate the cumulative percentage passing for each sieve size. Then determine the cumulative percentage passing for $600\mu m$.

(3 marks)

(ii) Determine the fineness modulus for the fine aggregate.

(2 marks)

(b) Considering the cumulative percentage passing as in answer (a)(i), calculate the concrete design mix for grade G35 using the Design of Normal Concrete Mixes method based on the specifications in **Table Q2.2**. By referring to figure **APPENDIX A.1** to **A.5**, propose suitable concrete mix design.

(20 marks)

Table Q2.2 Specification concrete mixes design

us Three trailer and a first three trails			
10% (k= 1.28)			
8 N/mm ²			
42.5 (Ordinary Portland Cement)			
Sources from stone quarry			
20 mm			
2.7			
30-60m			

Q3	(a)	List FIVE (5) factors that affect strength of timber.	
		(5 n	narks)
	(b)	Give FIVE (5) methods to treatment and curing timber.	
	(c)	(5 n Distinguish THREE (3) properties of softwood and hardwood.	narks)
	~ /		narks)
	(d)	In wood formation, illustrate and explain the part of 'cambium' and 'pith'	•
		(9 m	narks)
Q4	(a)	Name FOUR (4) classification of steel.	
	71.		narks)
	(b)	Describe FOUR (4) steel structure that commonly used in construction.	
	(c)	List THREE (3) non-ferrous metals used in construction. (6 m	arks)
		(3 m	arks)
	(d)	Name different types of glasses, and briefly describe the properties of category.	each
		(6 m	arks)
	(e)	Describe the properties and uses of aluminium as a material of construction	m.
		THE PROPERTY OF THE PROPERTY O	arks)

- END OF QUESTIONS -

	proximate compr ixes made with a					
Cement	Type of	Compressive strength (N/mm²) Age (days)				
strength	Type of — coarse —					
class	aggregate	3	7	28	91	
42.5	Uncrushed	22	30	42	49	
42.5	Crushed	27	36	49	56	
52.5	Uncrushed	29	37	48	54	
52.5	Crushed	34	43	55	61	

Throughout this publication concrete strength is expressed in the units N/mm^2 . $1 N/mm^2 = 1 MN/m^2 = 1 MPa$. (N = newton; Pa = pascal)

Figure APPENDIX A.2

Table 3: Approx		er content	(kg/m³)	required	to give
Slump (mm)		0-10	10-30	30-60	60-180
Vebe time (s)		>12	6-12	3-6	0-3
Maximum size of aggregate (mm)	Type of aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

Note: When coarse and fine aggregates is different types are used, the free water content is estimated by the expression:

$$\frac{2}{3}Wf^{+}\frac{1}{3}W_{c}$$

Where W_f

: free water content appropriate to type of fine aggregate

and W_c

: free water content appropriate to type of coarse aggregate

Figure APPENDIX A.3

Sakult Angarantan ay on da dayan Sakult Unibersat Law Saggar Day Manaya

Figure APPENDIX A.4

Maximum aggregate size: 20mm

Figure APPENDIX A.5

CONCRETE MIXES DESIGN FORM

NAME:	MATRIXNO:

			Reference					
Stage	Iten	n	or calculation	Values				
1	1.1	Characteristic strength	Specified	Proportion defe	ective	N/mm² at		days
	1.2	Standard deviation	Fig 3					
	1.3	Margin	C1 or Specified	(k =	}	×		N/mm²
	1.4	Target mean strength	C2			+	=	N/mm²
	1.5	Cement strength class	Specified	42.5/52.5				
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncru Crushed/uncru				
	1.7	Free-water/cement ratio				Г		
	1.8	Maximum free-water/ cement ratio	Specified			Use the lower va	ilue _	
2	2.1	Slump or Vebe time	Specified	Slump		mm or Vebe time		S
	2.2	Maximum aggregate size	Specified					mm
	2.3	Free-water content	Table 3					kg/m³
3	3.1	Cement content	C3		+	= .		kg/m³
	3.2	Maximum cement content	kg/m³					
	3.3	Minimum cement content	Specified		kg/m³			
				use 3.1 if \leq 3.2 use 3.3 if $>$ 3.1				kg/m³
	3.4 Modified free-water/cement ra		atio					
4	4.1	Relative density of aggregate (SSD)				known/assumed		
	4.2	Concrete density	Fig 5				****	kg/m³
	4.3	Total aggregate content	C4				=	kg/m³
5	5.1	Grading of fine aggregate	Percentage passir	ng 600 µm sieve				%
	5.2	Proportion of fine aggregate	Fig 6	***************************************				%
	5.3	Fine aggregate content]	C5	[×		=	kg/m³
	5.4	Coarse aggregate content		l			=	kg/m³
	Quantities		Cement (kg)	Water (kg or litres)	Fine aggregate (kg)	Coarse aggre	gate (kç 0 mm	g) 40 mm
	per n	n³ (to nearest 5 kg)						
	per tr	rial mix of m ³	***************************************					

Items in italics are optional limiting values that may be specified (see Section 7).

Concrete strength is expressed in the units N/mm². 1 N/mm² = 1 MN/ m² = 1 MPa. (N = newton; Pa = pascal.)

The internationally known term 'relative density' used here is synonymous with 'specific gravity' and is the ratio of the mass of a given volume of substance to the mass of an equal volume of water. ${\sf SSD} = {\sf based} \ {\sf on} \ {\sf the} \ {\sf saturated} \ {\sf surface-dry} \ {\sf condition}.$

