

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2014/2015**

COURSE NAME : PHYSICS III

COURSE CODE

: DAS 24603

PROGRAMME

: 3 DAU

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: A) ANSWER ALL QUESTIONS IN

PART A

B) ANSWER TWO (2) QUESTIONS

ONLY IN PART B

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

PART A

- Q1 Hydrogen's line spectrums are formed by a series of lines and each line in a given series corresponds to a different value of n. An electron in a hydrogen atoms is in the initial state $n_i = 4$.
 - (a) State Bohr orbits for five (5) spectral series.

(5 marks)

- (b) Calculate the wavelength, λ of the photon emitted by this electron if it jumps from $n_i = 4$ to the final stage: $n_f = 3$; $n_f = 2$; $n_f = 1$, respectively. (10 marks)
- Calculate the energy level, E of the photon emitted by this electron if it jumps from $n_i = 4$ to the final stage: $n_f = 3$; $n_f = 2$; $n_f = 1$, respectively. (10 marks)
- A bar magnet is moved rapidly towards a 500 turn circular coil of wire. As the magnet moves, the average value of $B \cos \theta$ over the area of the coil increases from 0.0125 T to 0.450 T in 0.250 s. If the radius of the coil is 3.05 cm and the resistance of its wire is 3.55 Ω .
 - (a) Define magnetic flux and state its formulae.

(5 marks)

(b) Determine the magnitude of the induced electromotive force (*emf*) and induced current in the coil if the field is perpendicular to the plane of the coil.

(9 marks)

(c) Determine the magnitude of the induced electromotive force (*emf*) and induced current in the coil if the field makes an angle of 60° with the plane of the coil.

(7 marks)

(d) Give two (2) different ways to create induced current.

(4 marks)

Q3		FIGURE Q3 shows two (2) wires of the same length and 1.0 m apart from each other carry current with I_1 and I_2 , 8.0 A and 10.0 A respectively.				
		(a)	State the right hand rule for fields.	(3 marks)		
		(b)	Calculate the force between the two wires.	(4 marks)		
		(c)	Determine the magnitude of the magnetic field through at the each two sides wire if the current flow in the same directions.	center of		
				(5 marks)		
		(d)	Determine the magnitude of the magnetic field through at the ce each two sides wire if the current flow in the opposite directions	pposite directions.		
		(e)	Determine the new force that act on wire of 10.0 A if the wire replace with the wall.	(5 marks) e 8.0 A is		
			•	(4 marks)		
Q4	(a)	FIGURE Q4 (a) shows an electric circuit with 6 resistors. The circuits connect with an <i>emf</i> equal to 100.0 V. Compute the magnitude of the current on the				
		circuit	t.	(13 marks)		

(i) Define critical current density, J_c

(4 marks)

(ii) Determine the drift velocity in the wire, v.

(4 marks)

(iii) Determine current density, J_c

(4 marks)

ONEIDENTIAL

CONT		DAS 24603					
Q5	The series combination of five capacitors shown in FIGURE Q5 is connected across 12.0 V power supply.						
	(a)	Define capacitor and capacitance.	(4 marks)				
	(b)	Determine the equivalent capacitance of the capacitors, $C_{\it eq}$.	(7 marks)				
	(c)	Determine the magnitude of the charges on the capacitors.	(6 marks)				
	(d)	Determine the potential difference across the capacitors.	(4 marks)				
	(e)	Determine the energy stored in the capacitors.	(4 marks)				
Q6	μC a	e charged particles with $q_1 = -50.0 \mu\text{C}$, $q_2 = +50.0 \mu\text{C}$ and q_3 replaced on the corner of the 5.0 cm \times 10.0 cm rectangle as URE Q6.					

- - State Coulomb's Law and its formulae. (a) (5 marks)
 - Calculate the magnitude of the net force on charge q_3 due to the other two charges. (14 marks)
 - (c) Calculate and show the direction of the net force on q_3 . (6 marks)

EXAMINATION

SEMESTER/SESSION : SEM II/2014/2015 PROGRAMME : 3 DAU

COURSE NAME : PHYSICS III

COURSE CODE : DAS 24603

FIGURE Q3

FIGURE Q4 (a)

DAS 24603 FINAL EXAMINATION SEMESTER/SESSION : SEM II/2014/2015 PROGRAMME : 3 DAU COURSE NAME : PHYSICS III COURSE CODE : DAS 24603 7.5 nF 18.0 nF 30.0 nF 10.0 nF 6.5 nF FIGURE Q5 q₃ 5.0 cm $10.0 \, \mathrm{cm}$ q_2 q_1

FIGURE Q6

CONFIDENTIAL

DAS 24603

FINALFINAL

SEMESTER/SESSION : SEM II/2014/2015 PROGRAMME : 3 DAU

COURSE NAME : PHYSICS III

COURSE CODE : DAS 24603

Appendix

E = hf	V = IR	$n=\frac{N}{L}$	$F = \frac{\mu_0}{2\pi} \left(\frac{I_1 I_2}{d}\right) l$
$A = \pi r^2$	U = mgh	$\Delta K = -\Delta U$	$F = \frac{\mu_0}{2\pi} \left(\frac{I_1}{d}\right) l$
$\phi = h f_o$	$L = mvr = \frac{nh}{2\pi}$	$W_n = \Delta K$	$F = Bqv \sin \theta$
$K = eV_s$	$R = \sqrt{R_x^2 + R_y^2}$	$W = F \Delta x$	$\varepsilon = Blv \sin \theta$
$hf = K_{max} + \phi$	$E = \frac{F}{q}$	$W = q\Delta V$	$B = \mu_o nI$
$LP = m \cdot v$	$J = \frac{I}{A}\theta$	q = ne	$\Delta \Phi = \Phi_2 - \Phi_1$
$K = \frac{ke^2}{2r}$	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	$B = \frac{\mu_o I}{2\pi d}$	$E = \frac{q}{4\pi\varepsilon_o(r)^2}$
$E = \frac{kQ}{d^2}$	$C = \frac{\varepsilon_o A}{d}$	$K = \frac{1}{2}mv^2$	$f_o = \frac{\phi}{h} = \frac{hc}{h\lambda}$
$F = \frac{kq_1q_2}{d^2}$	$\varepsilon = -N \frac{d\Phi}{dt}$	$v = \frac{BI}{neA}$	$e = -1.6x10^{-19} C$
$P = I^2 R$	$\varepsilon = -L\frac{dI}{dt}$	$E = \frac{\sigma}{\varepsilon}$	$\Phi = NBA kos \theta$
$F = mv^2$	$\phi = \frac{hf_0}{e}$	$k = \frac{1}{4\pi\varepsilon_0}$	$\mathbf{h} = 6.63 \times 10^{-34} Js$
$v = \frac{L}{t}$	$v = \frac{LI}{ne}$	$v = \frac{I}{neA}$	$\varepsilon = BAN \omega sin \omega t$
$F = \frac{ke^2}{r}$	$C = \frac{\varepsilon_r \varepsilon_o A}{d}$	$\Phi = BA$	$c = 3.0 X 10^8 ms^{-1}$
$I = \frac{Q}{t}$	$U = -\frac{ke^2}{r}$	$C = \frac{Q}{V}$	$\mu_o = 4\pi x 10^{-7} Tm$

ON

SEMESTER/SESSION : SEM II/2014/2015

PROGRAMME

: 3 DAU

COURSE NAME

: PHYSICS III

COURSE CODE

: DAS 24603

List of constants

- 1.
- Gravity acceleration, $g = 9.81 \text{ m/s}^2$ Rydberg constant, $R = 1.097 \times 10^7 \text{ m}^{-1}$. 2.
- Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} Nm^{-1}$ 3.
- Planck constant, $h = 6.63 \times 10^{-34} Js$ 4.
- Speed of light in air, $c = 3 \times 10^8$ m/s 5.
- Charge of electron, $e = 1.602 \times 10^{-19} C$ 6.
- Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} (Nm)^{-2} C^2$ Coulomb constant, $k = 9 \times 10^9 Nm^2 C^{-2}$ 7.
- 8.
- Resistivity of cooper, $\rho_{cooper} = 1.67 \times 10^{-8} \Omega \text{m}$ 9.
- Mass of electron, $e = 9.1 \times 10^{-31} kg$ 10.
- Mass of proton, $p = 1.673 \times 10^{-27} kg$ 11.