

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

MATHEMATICS FOR

ENGINEERING TECHNOLOGY II

COURSE CODE

BNJ12303/BNP12303/BNT12303/BNR17903/

BNQ10603/BWM12303

PROGRAMMECODE :

BNJ/ BNR/ BNT/ BNP

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

: 3 HOURS

:

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO

CONSULT THEIR OWN MATERIAL OR

ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIACLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

CONFIDENTIAL BNJ12303/BNP12303/BNR17903/

BNQ10603/BWM12303

Q1 (a) Show that $y = Ae^x + Bxe^x$, where A and B are constants, is the general solution of the differential equation y'' - 2y' + y = 0. Hence, find the solution when y'(0) = 1 and y(0) = 1.

(5 marks)

(b) Use the substitution $z = \cos y$, show that the differential equation

$$\frac{dy}{dx} - \frac{\cot y}{x} = e^{3x} \csc y$$

can reduce to

$$\frac{dz}{dx} + \frac{z}{x} = -e^{3x}.$$

Hence, solve the original equation when y(1) = 0.

(10 marks)

(c) Show that the equation $(3x^2 + 2y + 1)dx + (2x + 6y^2 + 2)dy = 0$ is an exact equation.

(3 marks)

(ii) Then, determine the general solution from the given differential equation.

(7 marks)

Q2 (a) Determine which of the following equation is linear. If linear, determine whether or not the equation is homogeneous and state its coefficient form.

(i)
$$\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 2y = 0$$

(2 marks)

(ii)
$$y \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} - 3y = 3x^2$$

(2 marks)

(iii)
$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + y = 0$$

(2 marks)

(b) (i) Examine the general solution of $12 \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} - 3y = 0$.

(3 marks)

CONFIDENTIAL BNJ12303/BNP12303/BNR12303/BNR17903/

BNQ10603/BWM12303

(ii) Use the result from **Q2** (b) (i) to solve $12 \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} - 3y = e^x$ if given y(0) = 2, y'(0) = 3.

(8 marks)

(c) Solve the non-homogeneous equation by using the method variation of parameters

$$y'' + 5y' + 6y = e^{-x}.$$

(8 marks)

- Q3 (a) Determine the inverse Laplace transform of the following functions.
 - (i) $F(s) = \frac{e^{-4s}}{(s+2)^3}$

(3 marks)

(ii)
$$F(s) = \frac{s+5}{s^2+6s+9}$$

(3 marks)

(iii)
$$F(s) = \frac{s}{s^2 - 9}$$

(3 marks)

(b) (i) By using the convolution theorem, show that

$$L^{-1}\left\{\frac{s^2}{(s^2+a^2)^2}\right\} = \frac{1}{2}\left(\frac{1}{a}\sin at + t\cos at\right).$$

(8 marks)

(ii) Solve the differential equation

$$\frac{d^2y}{dt^2} - \frac{dy}{dx} = e^t.$$

When y(0) = 0, y'(0) = 0

(8 marks)

CONFIDENTIAL BNJ12303/BNP12303/BNR17903/

BNQ10603/BWM12303

Q4 (a) The two-dimensional movement of a particle follows an equation

$$\frac{1}{e^x}\frac{dy}{dx}-4x-1=0.$$

At the initial x=0, the y movement of the particle is at a position y=-3. Determine the displacement y at x=0.25, x=0.5, x=0.75 and x=1 using Second order Taylor series method.

(10 marks)

(b) Solve the boundary value problem

$$x'' + 4x = \sin t$$
, $x(0) = 0$ and $x(1) = 0$

in the interval $0 \le t \le 1$ using finite difference method by taking $\Delta t = h = 0.25$. (15 marks)

- END OF QUESTIONS

BNQ10603/BWM12303

FINAL EXAMINATION

SEMESTER \ SESSION: SEM II/ 2022\2023

PROGRAMME CODE:

BNJ\BNT\BNP\BNR\BNO\BWM

COURSE NAME: MATHEMATICS FORENGINEERING TECHNOLOGY II

COURSECODE: BNJ12303\BNQ10603\ BNP12303\BNT12303\BNR17903\BWM12303

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Chara	cteristic equation: $am^2 + bm + c = 0$.		
Case	The roots of characteristic equation	General solution	
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$	
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$	
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$	

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})$
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n}+B_{n-1}x^{n-1}+\cdots+B_{1}x+B_{0})e^{\alpha x}$
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x +$
$\sin \beta x$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})\sin \beta x$
Ce^{ax} $\begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^r e^{\alpha x} (P\cos\beta x + Q\sin\beta x)$
$P_{n}(x)e^{\alpha x}\begin{cases} \cos \beta x\\ \sin \beta x\end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x +$
$\int \sin \beta x$	$x^{r}(C_{n}x^{n}+C_{n-1}x^{n-1}+\cdots+C_{1}x+C_{0})e^{\alpha x}\sin\beta x$

Note : r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

5

CONFIDENTIAL BNJ12303/BNP12303/BNT12303/BNR17903/

BNQ10603/BWM12303

FINAL EXAMINATION

SEMESTER \ SESSION: SEM II/ 2022\2023

PROGRAMME CODE:

BNJ\BNT\BNP\BNR\BNQ\BWM

COURSE NAME: MATHEMATICS FORENGINEERING

COURSECODE: BNJ12303\BNQ10603\

TECHNOLOGY II

BNP12303\BNT12303\BNR17903\BWM12303

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = uy_1 + vy_2,$$

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$

Laplace Transform

	$\mathcal{L}\{f(t)\} = \int_0^\infty$	$f(t)e^{-st}dt = F(s)$	
f(t)	F(s)	f(t)	F(s)
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}
cos at	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$
cosh <i>at</i>	$\frac{s}{s^2 - a^2}$	y(t)	Y(s)
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$		

BNQ10603/BWM12303

FINAL EXAMINATION

SEMESTER \ SESSION: SEM II/ 2022\2023

PROGRAMME CODE:

BNJ\BNT\BNP\BNR\BNO\BWM

COURSE NAME: MATHEMATICS FORENGINEERING

TECHNOLOGY II

COURSECODE: BNJ12303\BNQ10603\ BNP12303\BNT12303\BNR17903\BWM12303

Euler's method:

$$y(x_{i+1}) = y(x_i) + hy'(x_i)$$

Fourth-order Runge-Kutta method

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
where $k_1 = hf(x_i, y_i)$, $k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$

$$k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}) k_4 = hf(x_i + h, y_i + k_3)$$

Finite difference method

$$y'_{i} = \frac{y_{i+1} - y_{i-1}}{2h}, \quad y'_{i} = \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}.$$