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Q1

Q2

(a)

(b)

(c)

(a)

(b)
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Show that y = 4e™ + Bxe™, where 4 and B are constants, is the general solution of
the differential equation y"—23’+ y =0 .Hence, find the solution when y'(0) =1
and y(0)=1.

(5 marks)
Use the substitution z = cos y, show that the differential equation
d
SOV e ¥
dx
can reduce to
dz z 3
—+—=—e.
gx X
Hence, solve the original equation when v(1)=0.
(10 marks)
(i)  Show that the equation (3x” +2y+1)dx +(2x+6y> +2)dy =0
is an exact equation.
(3 marks)

(i1) Then, determine the general solution from the given differential equation.

(7 marks)

Determine which of the following equation is linear. If linear, determine whether or
not the equation is homogeneous and state its coefficient form.

" d*y dy
+10—=—+2y=0
W TR
(2 marks)
- d’y _dy 3
———-5—-3y=3x"
@ dx*  dx =
(2 marks)
2 )
(i)  x° d—f+2xdl+ y=0
dx dx
(2 marks)
2
d
(1) Examine the general solution of12 4 3) . Ip=0.
dx” dx
(3 marks)
2
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(c)

Q3 (3

(b)
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5

d°y dv

a

(ii) Use the result from Q2 (b) (i) to solve 12 dx- - SZ —3y=e" if given

»(0)=2, y'(0)=3.
(8 marks)

Solve the non-homogeneous equation by using the method variation of parameters

h 4

Y +5y' +6y=e".

(8 marks)

Determine the inverse Laplace transform of the following functions.

—4s
(i) PF{g)=
( (S + 2)3
(3 marks)
- s+5
11 F(s)= TR o

@) () §°+65+9
(3 marks)

(i)  F(s)=—>

S [

(3 marks)

(i) By using the convolution theorem, show that

L ,S—hq,- = l(—l—sin at+1rcos at).
(s"+a”) 2\a

(8 marks)

(i)  Solve the differential equation

Ly dy_,
dt*  dx
When y(0)=0, 3'(0)=0
(8 marks)
3
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Q4 (3

(b)
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The two-dimensional movement of a particle follows an equation

L—atl—dr_ﬁch:O.
dx

x

e
At the initial x=0, the y movement of the particle is at a position y=-3.

Determine the displacement y at x=0.25, x=0.5, x=0.75 and x=1 using Second
order Taylor series method.

(10 marks)

Solve the boundary value problem
x"+4x=sint, x(0)=0 and x(1)=0
in the interval 0 <7 <1 using finite difference method by taking Az =h=0.25.
(15 marks)

- END OF QUESTIONS
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FORMULA

Second-order Differential Equation
The roots of characteristic equation and the general solution for differential equation
ay"+by' +cy=0.

Characteristic equation: am” +bm +c¢ = 0.

Case | The roots of characteristic equation General solution
Real and different roots:  m, and m, y = Ae™ + Be™"
2. | Real and equal roots: m=m =m, y=(A4+ Bx)e™
Complex roots:m, =a+ Bi, my=a—fi | y=e™(Acosfx+ Bsin Fx)

The method of undetermined coefficients
For non-homogeneous second order differential equation ay”+5y' +cy= f(x),the particular

solution is given by y,(x):

f(x) V(%)
P(x)=Ax"+A4,_x""++A4x+4, |x(Bx"+B, x"'+--+Bx+B,)
Ce™ x'(Pe™)
Ccos fx or Csin Bx x"(Pcos fx+Qsin fx)
P (x)e™ X' (Bx"+B,_x""+---+Bx+B,)e™
P ) {COS Px x"(B,x"+B, x"'+--+Bx+B,)cos fx+
"7 |sin Bx x(Cx"+C,_x"" ++-+Cx+C,)sin fx
Ce™ {cios o x"e™ (Pcos fx+ Osin fx)
sin x
P (0)e™ {cos Px x"(Bx"+B,_x"" +---+ Bx+ B,)e™ cos fx+
. sin ffx x(Cx"+C,_x"" ++++ Cx+C,)e“ sin fx

Note :r is the least non-negative integer (=0, 1, or 2) which determine such that there is no terms
in particular integral y »(x) corresponds to the complementary function y,_(x).

5
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The method of variation of parameters

If the solution of the homogeneous equation ay”+by'+cy=0 is y. = Ay, +By,, then the

particular solution for ay"+by' +cy = f(x) is

y = uyl +v.V2 £l
»af (%) nf(x) T 2 ;
where u=—I2a—de+A, v=!—;—W—dx+Band W—-‘y:’ ;' =NV — V2 W
Laplace Transform
LU @O = [ f0)e™dt = F(s)
f(t) F(s) (@) F(s)
a L H(t—a) i
s S
e 1 f(t—a)H(t—a) e “F(s)
S—a
5 a
sin at % o(t—a) e
5 +a
cosat s f®st-a) e f(a)
i
sinhar s [ fang(e—uydu F(s)- G(s)
& =
5
t W
coshat 7 (1) (s)
1
* n=1,23,.. S"—l 40) sY(s)— ¥(0)
e” f(t) F(s—a) y'(2) s*¥(s) = sp(0)— ¥'(0)
t"f(t), n=12,3,... D" il F(s)
ds"
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Euler’s method: y(x,,)=y(x)+h'(x,)

Fourth-order Runge-Kutta method
YVia =V +%(k; +2k, +2k; + 1, )

where k, =hf(x,, v,), Kk, =hf(x, +§’ v, +%)

ky =hf(x; +g, Y +%) ky=hf(x;,+h, y,+k;)

Finite difference method
P Yier — Yiq _ Vi~ 2y + Yy
L B Y e e

. 2h : W
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