

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2022/2023**

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

: BNR 10303

PROGRAMME CODE : BND/BNE/BNF

EXAMINATION DATE : JULY/AUGUST 2023

DURATION

3 HOURS :

INSTRUCTIONS

- ANSWER ALL QUESTIONS
- 2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK
- STUDENTS ARE PROHIBITED TO 3. CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

TERBUKA

CONFIDENTIAL

BNR10303

Q1 (a) In a linear circuit, the voltage source is

$$v_s = 12 \sin(10^3 t + 24^\circ) \text{ V}$$

(i) Determine the angular frequency of the voltage.

(2 marks)

(ii) Calculate the frequency of the source.

(2 marks)

(iii) Calculate the period of the voltage.

(2 marks)

(iv) Express v_s in cosine form.

(2 marks)

(v) Determine v_s at t = 2.5 ms.

(2 marks)

- (b) Using phasors, determine i(t) in the following equations:
 - (i) $2\frac{di}{dt} + 3i(t) = 4\cos(2t 45^0)$

(5 marks)

(ii) $10 \int i \, dt + \frac{di}{dt} + 6i(t) = 5\cos(5t + 22^0)$

(5 marks)

(c) Evaluate i_x when $i_s = 2 \sin 5t$ A, is supplied to the circuit in Figure Q1(c).

(5 marks)

Q2 (a) By using mesh analysis, evaluate current Io in the circuit in Figure Q2(a).

(20 marks)

(b) Use nodal analysis to evaluate v_0 in the circuit in **Figure Q2(b)**.

(5 marks)

2

CONFIDENTIAL

Q3 (a) At t = 2 s, evaluate the instantaneous power on each of the elements in the circuit shown in **Figure Q3(a)**.

(17 marks)

- (b) For the circuit in Figure Q3(b), evaluate:
 - (i) the value of the load impedance that absorbs the maximum average power.

(2 marks)

(ii) the value of the maximum average power absorbed.

(6 marks)

Q4 (a) Differentiate between balanced phase voltages and balanced load.

(4 marks)

- (b) Three 230 V generators form a delta-connected source that is connected to a balanced delta-connected load of $Z_L = 10 + j8$ Ω per phase as shown in **Figure** Q4(b).
 - (i) Determine the value of I_{AC}

(2 marks)

(ii)Determine the value of I_{bB}

(2 marks)

(c) Calculate the total inductance for the three coupled coils in Figure Q4(c).

(3 marks)

- (d) Given the circuit in **Figure Q4(d)**, with $V_1 = 10 \text{ V}$, $V_2 = 10 \text{ V}$, $R_1 = R_2 = 10 \text{ Ohm}$, $\omega L_1 = \omega L_2 = 10$, and $\omega M = 5$. Determine:
 - (i) The coupling coefficient, k

(2 marks)

(ii) The currents in the primary and secondary circuits, I_1 and I_2

(12 marks)

END OF QUESTIONS –

3

CONFIDENTIAL

TERBUKA

SEMESTER / SESSION: SEM II / 2022/2023

COURSE NAME :

: ELECTRICAL PRINCIPLES II

PROGRAMME CODE: BNE/BND/BNF

COURSE CODE : BNR 10303

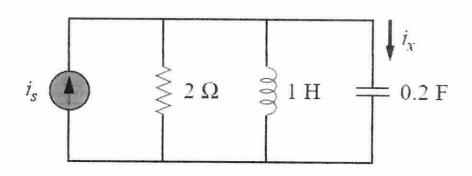


Figure Q1(c)

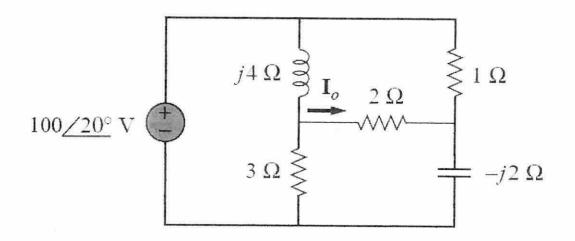


Figure Q2(a)

SEMESTER / SESSION: SEM II / 2022/2023

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME CODE: BNE/BND/BNF

COURSE CODE

: BNR10303

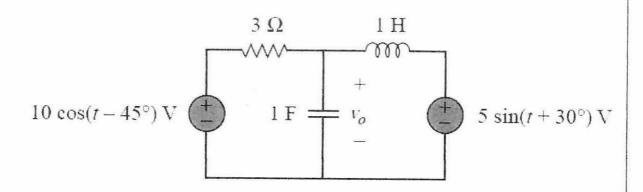


Figure Q2(b)

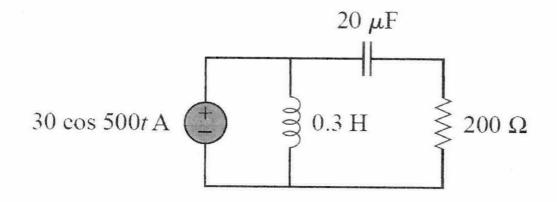


Figure Q3(a)

SEMESTER / SESSION: SEM II / 2022/2023

COURSE NAME

: ELECTRICAL PRINCIPLES II COURSE CODE

PROGRAMME CODE: BNE/BND/BNF

: BNR10303

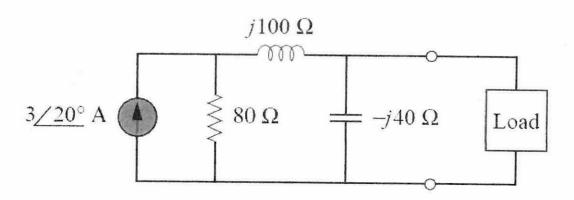


Figure Q3(b)

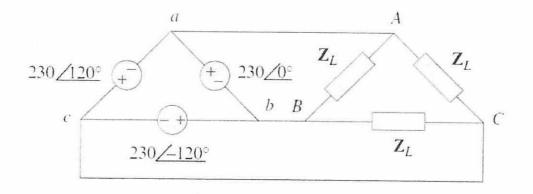


Figure Q4(b)

SEMESTER / SESSION: SEM II /2022/2023

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME CODE: BNE/BND/BNF

COURSE CODE

: BNR10303

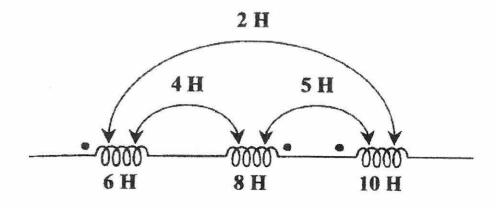


Figure Q4(c)

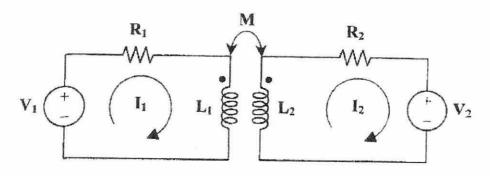


Figure Q4(d)