

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

STRUCTURAL ANALYSIS AND

DESIGN

COURSE CODE

BNP 20803

PROGRAMME CODE

: BNA/BNB/BNC

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

: 3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS.

2. THIS FINAL EXAMINATION

IS CONDUCTED VIA

CLOSED BOOK

3. STUDENTS ARE

PROHIBITED TO CONSULT THEIR OWN MATERIAL OR

ANY EXTERNAL

RESOURCES DURING THE

EXAMINATION

CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

cyll signs of

TERBUKA

Q1 (a) Structures can be classified into two category which is statically determinate and statically indeterminate structure. Define a statically indeterminate structure.

(2 marks)

(b) By using the moment distribution method, determine the final moments at all joints for the beam shown in **Figure Q1(b)**. The Young's Modulus, E, is 200 kN/mm² and the second moment of area, I, is 5×10^6 mm⁴ for all members of the beam.

(13 marks)

(c) Find the reaction at supports A, B, C and D.

(4 marks)

(d) Draw the shear force and the bending moment diagrams for the beam.

(6 marks)

Q2 (a) Composite action is achieved through the combination of concrete and steel reinforcement. Describe the properties of concrete and steel reinforcement that result in an economical structure.

(4 marks)

(b) **Figure Q2(b)** shows the plan view of slab-beam system in a building. As a result of ongoing construction works, both the beam and a part of the slab are required to function act as a pre-cast concrete slab. Given;

Slab thickness = 200 mm

Beam size = 250 mm x 500 mm

Finishes = 1.0 kN/m^2 Ceiling = 1.0 kN/m^2

Brick wall = $2.6 \text{ kN/m}^2 (3.0 \text{ m height})$

Chac. variable action, q_k = 3.0 kN/m² Chac. strength of concrete, f_{ck} = 30 N/mm² Chac. strength of steel, f_{yk} = 500 N/mm²

CONFIDENTIAL

Sketch the action distribution on the beam from each slab (i) (3 marks)

Referring to the simply supported beam B/1-2, determine the design (ii) action act on beam.

(12 marks)

Determine the maximum shear force and bending moment.

(6 marks)

An interior one-way slab has an effective span of 4 m. The provided steel area Q3 (a) is 503 mm² with the characteristic strength of 500 N/mm². Additionally, the concrete has a characteristic strength of 30 N/mm². Determine the service variable action (q_k) in kN/m² that the slab can support. Consider a nominal cover = 30 mm, slab thickness = 175 mm and the permanent load (excluding selfweight) = 1.5 kN/m^2 .

(7 marks)

- Figure Q3(b) shows an interior two-way slab with a thickness of 175 mm and (b) nominal cover of 25 mm. The bending moments and shear forces as tabulated in Table Q3(b) were calculated using the design action, η_d of 18.90 kN/m. The characteristic strength of concrete and steel reinforcement are 25 MPa and 500 MPa, respectively. Based on the information given,
 - Design the steel reinforcement at the mid-short span. (i)

(6 marks)

Check the shear capacity of the slab. (ii)

(5 marks)

Check the deflection of the slab. (iii)

(5 marks)

If all four edges of the slab are discontinuous, describe the changes on the (c) analysis and design of the slab.

3

(2 marks)

CONFIDENTIAL

TERBUKA

Q4 (a) Figure Q4(a) shown the I beam cross section. The chosen section is made of grade S275 steel and has two flanges measuring 189.9 mm × 12.7 mm each, along with a web of 453.4 mm× 8.5 mm. The weld size presented by the leg length s, is 6.0 mm. Classify the cross-section.

(6 marks)

(b) A steel member shown in Figure Q4(b) needs to be designed to carry combined bending and axial load. With the presence of a major axis (y-y) bending moment and an axial force of 300kN, please determine the cross-section classification of a 406×178UB54 in grade S275 steel.

(6 marks)

(c) In your own words, please explain SIX (6) advantages by using steel structure in construction compared to reinforced concrete structure.

(6 marks)

(d) By thinking out of the box, please explain how steel structure can save money in the construction industry.

(7 marks)

-END OF QUESTIONS -

CONFIDENTIAL

4

SEMESTER/SESSION: SEM 2 2022/2023

PROGRAMME CODE: BNA/BNB/BNC

COURSE NAME

: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE

: BNP 20803

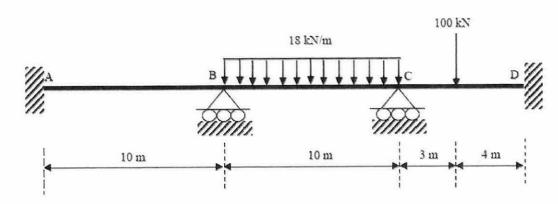


Figure Q1(b)

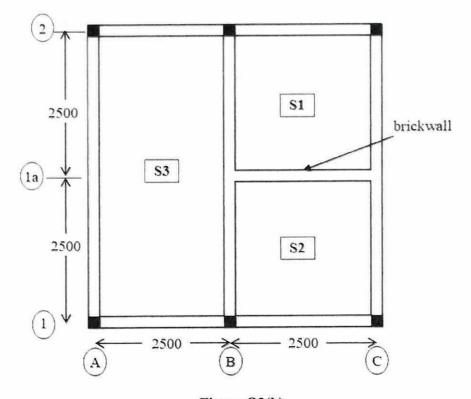


Figure Q2(b)

CONFIDENTIAL

TERBUKA

5

SEMESTER/SESSION: SEM 2 2022/2023

PROGRAMME CODE: BNA/BNB/BNC

COURSE NAME

: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE

: BNP 20803

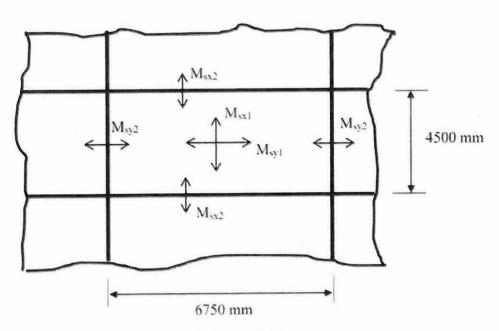


Figure Q3(b)

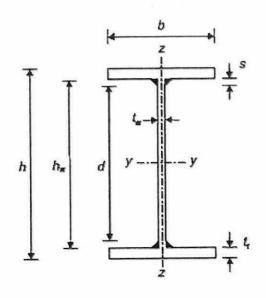
Table Q3(b)

Bending Moment (kNm/m)	Shear Force (kN/m)	As required (mm ² /m)	Bar provided
Not specified	~	Not specified	H10 - 300 (bot)
20.20	38.27	337	H10 – 200 (top)
9.10		163	H10 – 350 (bot)
12.25	28.07	220	H10 – 300 (top)
	Moment (kNm/m) Not specified 20.20 9.10	Moment (kNm/m) Not specified - 20.20 38.27 9.10 -	Moment (kNm/m) Shear Force (kN/m) As required (mm²/m) Not specified - Not specified 20.20 38.27 337 9.10 - 163

CONFIDENTIAL

ont by the coll

SEMESTER/SESSION: SEM 2 2022/2023


PROGRAMME CODE: BNA/BNB/BNC

COURSE NAME

: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE

: BNP 20803

b = 189.9 mm

 $t_f = 12.7 \text{ mm}$

 $h_w = 428 \text{ mm}$

h = 453 mm

 $t_w = 8.5 \text{ mm}$

s = 5.1 mm

Figure Q4(a)

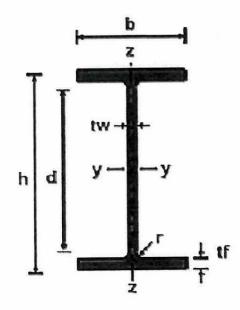
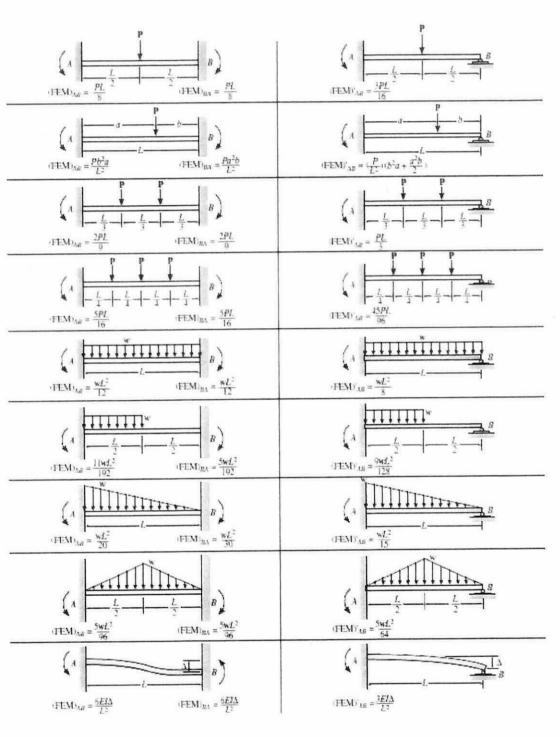


Figure Q4(b)

CONFIDENTIAL

SEMESTER/SESSION: SEM 2 2022/2023

PROGRAMME CODE: BNA/BNB/BNC


COURSE NAME

: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE

: BNP 20803

APPENDIX A

CONFIDENTIAL

TERBUKA

SEMESTER/SESSION: SEM 2 2022/2023

PROGRAMME CODE: BNA/BNB/BNC

COURSE NAME

: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE

: BNP 20803

APPENDIX B

 $\begin{array}{l} {\it Table~3.15-Shear~force~coefficient~for~uniformly~loaded~rectangular~panels~supported~on~four~sides~with~provision~for~torsion~at~corners} \end{array}$

Type of panel and location	β_{vz} for values of l_v/l_z								β _{vy}
	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
Four edges continuous									
Continuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33
One short edge discontinuous									
Continuous edge	0.36	0.39	0.42	0.44	0.45	0.47	0.50	0.52	0.36
Discontinuous edge	_	_	-	-	-	-	_	-	0.24
One long edge discontinuous									
Continuous edge	0.36	0.40	0.44	0.47	0.49	0.51	0.55	0.59	0.36
Discontinuous edge	0.24	0.27	0.29	0.31	0.32	0.34	0.36	0.38	_
Two adjacent edges discontinuous									
Continuous edge	0.40	0.44	0.47	0.50	0.52	0.54	0.57	0.60	0.40
Discontinuous edge	0.26	0.29	0.31	0.33	0.34	0.35	0.38	0.40	0.26
Two short edges discontinuous									
Continuous edge	0.40	0.43	0.45	0.47	0.48	0.49	0.52	0.54	
Discontinuous edge	_	_	_	_	-	1-	_	-	0.26
Two long edges discontinuous									
Continuous edge	-	-		-	-			-	0.40
Discontinuous edge	0.26	0.30	0.33	0.36	0.38	0.40	0.44	0.47	-
Three edges discontinuous (one long edge discontinuous)									
Continuous edge	0.45	0.48	0.51	0.53	0.55	0.57	0.60	0.63	
Discontinuous edge	0.30	0.32	0.34	0.35	0.36	0.37	0.39	0.41	0.29
Three edges discontinuous (one short edge discontinuous)									
Continuous edge	-	_	-	_	-	-	-	-	0.45
Discontinuous edge	0.29	0.33	0.36	0.38	0.40	0.42	0.45	0.48	0.30
Four edges discontinuous									
Discontinuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33

CONFIDENTIAL

NAME OF BUILDING

SEMESTER/SESSION: SEM 2 2022/2023

PROGRAMME CODE: BNA/BNB/BNC

COURSE NAME: STRUCTURAL ANALYSIS & DESIGN

COURSE CODE : BNP 20803

APPENDIX C

Cross Sectional Area of Reinforcement

Table 1: Cross Sectional Area (mm2) according to Size and Numbers of Bar

Bar Size		Number of bar								
(mm)	1	2	3	4	5	6	. 7	8		
6	28.3	56.6	84.9	113	141	170	198	226	18.9	
8	50.3	101	151	201	251	302	352	402	25.1	
10	78.6	157	236	314	393	471	550	629	31.4	
12	113	226	339	453	566	679	792	905	37.7	
16	201	402	603	805	1006	1207	1408	1609	50.3	
20	314	629	943	1257	1571	1886	2200	2514	62.9	
25	491	982	1473	1964	2455	2946	3438	3929	78.6	
32	805	1609	2414	3218	4023	4827	5632	6437	100.6	
40	1257	2514	3771	5029	6286	7543	8800	10057	125.7	

Table 2: Cross Sectional Area (mm2) for every meter width at distance between bar

Bar Size (mm)	Distance between Bar (mm)									
	50	75	100	125	150	175	200	250	300	
6	566	377	283	226	189	162	141	113	94	
8	1006	670	503	402	335	287	251	201	168	
10	1571	1048	786	629	524	449	393	314	262	
12	2263	1509	1131	905	754	647	566	453	377	
16	4023	2682	2011	1609	1341	1149	1006	805	670	
20	6286	4190	3143	2514	2095	1796	1571	1257	1048	
25	9821	6548	4911	3929	3274	2806	2455	1964	1637	
32	16091	10728	8046	6437	5364	4598	4023	3218	2682	
40	25143	16762	12571	10057	8381	7184	6286	5029	4190	

CONFIDENTIAL

