

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

CONTROL SYSTEM

COURSE CODE

BNR 37502

PROGRAMME CODE :

.

BND/BNE/BNF

EXAMINATION DATE:

JULY/AUGUST 2023

DURATION

2 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED

BOOK.

3. STUDENTS ARE **PROHIBITED**TO CONSULT THEIR OWN
MATERIAL OR ANY EXTERNAL
RESOURCES DURING THE
EXAMINATION CONDUCTED

VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

TERBUKA

CONFIDENTIAL

BNR 37502

CO	CONTIDENTIAL BINK 3/302			
Q1	(a)	Figure Q1 (a) shows step responses of different variations of PID corP, PI, PD, PID).	ntrollers	
		i) State number of step response that belongs to the PD-controller. (2	marks)	
		ii) Discuss the difference between PD and PI controller effect. (4	marks)	
		iii) Name THREE (3) PID components that affect the time response.	marks)	
	(b)	Figure Q1 (b) depicts a block diagram for a control system.	*	
		i) Define stability concept in control engineering. (2	marks)	
		ii) Find the closed-loop transfer function. (3	marks)	
		iii) Analyse the stability of system using Routh table method. (11	marks)	
Q2	(a)	Block diagram of a feedback control system is shown in Figure Q2 (a).		
		i) Draw the Signal Flow Graph (SFG). (4	marks)	
		(ii) Find the transfer function, $G(s) = \frac{C(s)}{R(s)}$ using Mason's Rule. (8)	marks)	
	(b)	An autonomous ground vehicle uses a servomotor as an actuator for naveontrol. The block diagram of the control system is given in Figure Q2 (b) .		
		i) Explain the use of block diagram. (3	marks)	
		ii) Determine the transfer function of C(s)/R(s) using block diagram reduction	ion.	

2

CONFIDENTIAL

(10 marks)

CONFIDENTIAL

BNR 37502

- Q3 (a) The electrical system in time domain is shown in Figure Q3 (a) with the applied voltage $v_i(t)$ as the input and $v_o(t)$ as the output.
 - (i) Draw electrical system in Laplace domain.

(2 marks)

(ii) Find the transfer function, $G(s) = \frac{V_0(s)}{V_i(s)}$ using mesh analysis.

(8 marks)

(b) Obtain the transfer function $G(s) = \frac{X(s)}{F(s)}$ of the translational mechanical system as shown in **Figure Q3** (b) with a free body diagram.

(5 marks)

(c) Determine the ramp response in time domain for below transfer function of a system.

$$G(s) = \frac{5s}{(s-2)(s+3)^2}$$

(10 marks)

- Q4 (a) Figure Q4 (a) shows a time response of a system.
 - (i) State the order of the system.

(2 marks)

(ii) Briefly explain TWO (2) main components in the time response.

(4 marks)

(b) A rotational mechanical system as shown in **Figure Q4** (b) can be modelled using Laplace transform. Let K = 5 N - m/rad, $J = 0.26 kg - m^2$ and D = 1.04 N - m - s/rad.

(i) Draw an equivalent diagram.

(4 marks)

(ii) Generate a transfer function of $G(s) = \frac{\theta(s)}{T(s)}$.

(5 marks)

(iii) Find ζ , ω_n , T_p , T_s , and % OS.

(10 marks)

- END OF QUESTIONS -

3

CONFIDENTIAL

SEMESTER / SESSION : SEM II 2022/2023 COURSE NAME

: CONTROL SYSTEM

PROGRAMME CODE: BND/BNE/BNF

COURSE CODE: BNR 37502

Figure Q1 (a)

Figure Q1 (b)

CONFIDENTIAL

TERBUKA

FINAL EXAMINATION SEMESTER / SESSION : SEM II 2022/2023 PROGRAMME CODE: BND/BNE/BNF COURSE NAME : CONTROL SYSTEM COURSE CODE: BNR 37502 $G_3(s)$ C(s)R(s) $G_4(s)$ H(s)Figure Q2 (b) 4H 5Ω 10Ω $V_i(t)$ $\nabla V_0(t)$ Figure Q3 (a) В Figure Q3 (b) 5

CONFIDENTIAL

TERBUKA

SEMESTER / SESSION : SEM II 2022/2023

COURSE NAME

: CONTROL SYSTEM

PROGRAMME CODE: BND/BNE/BNF

COURSE CODE: BNR 37502

Figure Q4 (a)

Figure Q4 (b)

APPENDIX

TIME RESPONSE TABLE

$\xi = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}}$	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} (\sec)$	$T_s = 4\tau = \frac{4}{\zeta \omega_n} (\sec)$
$T_r = \frac{2.16\zeta + 0.60}{\omega_n} (\text{sec})$	$OS = 100e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}} (\%)$	$M_{pt} = 1 + e^{\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}}$

SEMESTER / SESSION : SEM II 2022/2023 COURSE NAME : CONTROL SYSTEM

PROGRAMME CODE: BND/BNE/BNF

COURSE CODE: BNR 37502

APPENDIX

II. LAPLACE TRANSFORM TABLE

No.	f(t)	F(s)	
1.	$\delta(t)$	1	Unit Impulse Function
2.	u(t)	$\frac{1}{s}$	Unit Step Function
3.	tu(t)	$\frac{1}{s^2}$	Unit Ramp Function
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$	
6.	$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	
7.	$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	
8.	$(1-at)e^{-at}u(t)$	$\frac{s}{(s+a)^2}$	
9.	$\frac{1}{a}[1 - e^{-at}u(t)]$	$\frac{1}{s(s+a)}$	
10.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$	
11.	$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$	
12.	$e^{-at} \sin \omega t u(t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	
13.	$e^{-at}\cos\omega tu(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	

SEMESTER / SESSION : SEM II 2022/2023

PROGRAMME CODE: BND/BNE/BNF

COURSE NAME : CONTROL SYSTEM

COURSE CODE: BNR 37502

APPENDIX

III. LAPLACE TRANSFORM THEOREMS

No.	Theorem	Name
1.	$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$	Laplace definition
2.	$\mathcal{L}[kf(t)] = kF(s)$	Linearity Theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)] = F_1(s) + F_2(s)$	Linearity Theorem
4.	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$	Frequency Shift Theorem
5.	$\mathcal{L}[f(t-T)] = e^{-sT}F(s)$	Time Shift (T) Theorem
6.	$\mathcal{L}[f(at)] = \frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling Theorem
7.	$\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s) - f(0^{-})$	Differentiation Theorem
8.	$\mathcal{L}\left[\frac{d^2f(t)}{dt^2}\right] = s^2F(s) - sf(0^-) - f'(0^-)$	Differentiation Theorem
9.	$\mathcal{L}\left[\frac{d^{n}f(t)}{dt^{n}}\right] = s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0^{-})$	Differentiation Theorem (in general)
10.	$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{F(s)}{s}$	Integration Theorem
11.	$f(\infty) = \lim_{s \to 0} sF(s)$	Final Value Theorem
12.	$f(0^+) = \lim_{s \to \infty} sF(s)$	Initial Value Theorem

