

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2022/2023**

COURSE NAME

: CIRCUIT THEORY

COURSE CODE : DAE 11103

PROGRAMME CODE : DAE

EXAMINATION DATE : JULY / AUGUST 2023

DURATION

: 3 HOURS

INSTRUCTIONS

: 1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED

BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED

VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

ŲI	(a)	Write the Kirchoff current law (KCL) equations for all nodes in the circuit of Figure Q1(a).	
	(b)	For the circuit in Figure Q1(b) , find the current i_1 in term of i_s .	(8 marks)
			(12 marks)
Q2	(a)	Calculate the voltage across the 18A current source in Figure mesh or nodal analysis. Justify which method is preferred.	Q2(a) using
			(12 marks)
	(b)	Use mesh analysis to compute the current of i_1 , i_2 and i_3 in Figure	Q2(b).
			(8 marks)
Q3	(a)	For the circuit in Figure Q3(a) using the superposition theorem to	find i_s .
			(8 marks)
	(b)	Replace the circuit shown in Figure Q3(b) with its Thevenin equiv	valent.
			(12 marks)
Q4	(a)	Consider the circuit in Figure Q4 (a). Under DC condition, find:	
		(i) i , v_c and i_L .	
		(ii) Energy stored in the capacitor and inductor.	(5 marks)
			(3 marks)
	(b)	For the circuit in Figure Q4 (b), determine the time constant, τ .	
			(5 marks)
	(c)	Find $v(t)$ for $t > 0$ in the circuit of Figure Q4 (c) . Assume that the switch has been open for a long time and is closed at $t = 0$. Calculate $v(t)$ at $t = 0.25$ s.	
			(7 marks)

CONFIDENTIAL

DAE 11103

Q5	(a)	A current source in a linear circuit has $i_s = 8 \cos (500\pi t - 25^\circ)$) A.
		(i) What is the amplitude of the current?	
		(ii) What is the angular frequency?	(1 mark)
		(-)	(1 mark)
		(iii) Find the frequency of the current.	
			(2 marks)
		(iv) Calculate i_s at $t = 2$ ms.	
			(3 marks)
	(b)	For the circuit shown in Figure Q5 (b):	
		(i) Find the total impedance Z_T .	
		(ii) Determine the current I.	(5 marks)
		(iii) Calculate i ₁ and i ₂ .	(3 marks)
		(III) Calculate I and I2.	(5 marks)

- END OF QUESTIONS -

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: CIRCUIT THEORY

PROGRAMME CODE : DAE

COURSE CODE

: DAE 11103

Figure Q1(a)

SEMESTER / SESSION : SEM II / 2022/2023

PROGRAMME CODE : DAE

COURSE NAME

: CIRCUIT THEORY

COURSE CODE : DAE 11103

Figure Q2(a)

Figure Q2(b)

SEMESTER / SESSION : SEM II / 2022/2023 **COURSE NAME**

: CIRCUIT THEORY

PROGRAMME CODE: DAE

COURSE CODE

: DAE 11103

Figure Q3(a)

Figure Q3(b)

SEMESTER/SESSION COURSE NAME

: SEM II/2022/2023

: CIRCUIT THEORY

PROGRAMME CODE: DAE

COURSE CODE

: DAE 11103

Figure Q4 (a)

Figure Q4 (b)

Figure Q4 (c)

SEMESTER/SESSION **COURSE NAME**

: SEM II/2022/2023

: CIRCUIT THEORY

PROGRAMME CODE: DAE

COURSE CODE : DAE 11103

Figure Q5 (b)