

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

: ELECTRONICS

COURSE CODE

: DAE 21303

PROGRAMME CODE

: DAE

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

: 1. ANSWERS ALL QUESTIONS.

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED BOOK**.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

CONFIDENTIAL DAE21303

Q1	(a)	In you	ur own words, define briefly:		
		(i)	Extrinsic semiconductor. (2	marks)	
		(ii)	Forward bias and reverse bias. (2	marks)	
		(iii)	Depletion region. (2	marks)	
	(b)	N _{sec} tu	tre-tapped full wave rectifier with a load, R_L is driven by a transformer with N_{pri} : arn ratio. The primary transformer is connected to a 120 V_{rms} , 50 Hz. The average e, V_{dc} that is produced by this rectifier is 27 V. Assuming diodes are ideal.		
		(i)	Draw the schematic diagram of the circuit. (2	marks)	
		(ii)	Determine the transformer turns ratio. (4	marks)	
		(ii)	Sketch and label with values the input voltage, V_{in} and output voltawaveform of the rectifier.		
		(iii)	Calculate the Peak Inverse Voltage, PIV of each diode in the circuit.	marks) marks)	
	(c)	Based on question Q1(b), a 1.0 mF capacitor filter is now connected to the output of the rectifier circuit. If the dc current through the load is 0.1 A,			
		(i)	Determine the filtered output ripple voltage, $V_{r(p-p)}$ and the average voltage (4	e, V _{r(dc).} marks)	
		(ii)	Sketch and clearly label the output ripple voltage from the filter.	marks)	

Q2	Q2 (a) A voltage regulator circuit in Figure Q2(a) will maintain an output vo a 1 kΩ load, R _L with an input, V _S varies between 30 V and 50 V. Det			20 V across		
		(i)	The minimum, I_{ZMin} and the maximum zener current, I_{ZMax} for the net = 100 Ω .	work if Rin		
				(10 marks)		
		(ii)	The zener power rating, P _{zmin} and P _{zmax} .	(2 marks)		
	(b)	The ap	pplications of the diode are shown in Figure Q2(b) with two differences.	nt types of		
		(i)	Determine the output voltage, Vo.	(8 marks)		
		(ii)	Draw the waveform for each network.	(5 marks)		
Q3	(a)	Figure Q3(a)(i) depicts the load line and device characteristics of a fixed-bias network of Calculate the following based on the Figure Q3(a)(ii).				
		(i)	The common collector voltage, V _{CC}			
		(ii)	The base resistor, R _B	(2 marks)		
		(iii)	The collector resistor, R _C	(2 marks)		
		(111)	The conector resistor, Re	(2 marks)		
((b)	Determ Q3(b).	nine the dc bias characteristics for the voltage-divider configuration	of Figure		
		(i)	The dc base current, I _B	(6 marks)		
		(ii)	The dc collector current, I _C	,		
		()	The de concetor current, ie	(1 mark)		
		(iii)	The dc bias voltage, V _{CE}	(2 marks)		

CONFIDENTIAL

DAE21303

- (c) Refer to the amplifier network in Figure Q3 (c).
 - (i) Sketch the ac equivalent circuit using r_e model.

(4 marks)

- (ii) Determine the ac dynamic resistance, r_e if the dc base current, $I_B = 34.51 \mu A$. (2 marks)
- (iii) Calculate the input impedance, Z_i and the output impedance, Z_o . (4 marks)
- Q4 (a) Determine the pinch-off voltage, V_p for a specific JFET if the drain current, $I_D = 4mA$ when the gate to source, $V_{GS} = -3V$ and the maximum drain current, $I_{DSS} = 12 \text{ mA}$.

 (3 marks)
 - (b) For the self-bias configuration of **Figure Q4(b)**, solve the following if given Shockley's equation:

$$I_D = I_{\rm DSS} \left(1 - \frac{V_{GSQ}}{V_P}\right)^2$$

(i) The quiescent, Q-points (drain current, I_{DQ} and gate to source voltage, V_{GSQ}) by using graphical approach method.

(8 marks)

(ii) The drain to source voltage, V_{DS} , drain voltage, V_{D} , gate voltage, V_{G} and gate to source voltage, V_{GS} .

(7 marks)

- (c) The fixed-bias configuration of **Figure Q4(c)** had an operating point defined by the gate to source voltage, $V_{GSQ} = -2.5 \text{ V}$ with the maximum drain current, $I_{DSS} = 10 \text{ mA}$, the pinch-off voltage, $V_P = -4 \text{ V}$, and the drain resistance, $r_d = 20 \text{ k}\Omega$. Determine:
 - (i) The input impedance Z_i.

(1 mark)

(ii) The output impedance Z₀.

(2 marks)

(iii) The voltage gain A_v.

(4 marks)

-END OF QUESTIONS -

4

CONFIDENTIAL

SEMESTER / SESSION : SEM 2 2022/2023

COURSE NAME

: ELECTRONICS

PROGRAMME CODE: DAE

COURSE CODE

: DAE 21303

Figure Q2(a)

(i) Clipper Network

Figure Q2(b)

SEMESTER / SESSION : SEM 2 2022/2023 COURSE NAME

: ELECTRONICS

PROGRAMME CODE: DAE

COURSE CODE : DAE 21303

(i)

Figure Q3(a)

SEMESTER / SESSION : SEM 2 2022/2023

COURSE NAME : ELECTRONICS PROGRAMME CODE: DAE

COURSE CODE : DAE 21303

Figure Q3(c)

Figure Q4(b)

SEMESTER / SESSION : SEM 2 2022/2023

PROGRAMME CODE: DAE

COURSE NAME

: ELECTRONICS

COURSE CODE : DAE 21303

Figure Q4(c)

