

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2022/2023**

COURSE NAME

COMPUTER ARCHITECTURE

COURSE CODE

: DAT 10703

PROGRAMME CODE

: DAT

EXAMINATION DATE : JULY / AUGUST 2023

DURATION

: 3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA

CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

DAT10703

SECTION A (20 MARKS)

Q1

Fi	ll in the blanks with the correct answer.
a)	Networking between systems was invented during computer generation.
b)	The fifth computer generation was utilized to develop software.
c)	A bus consists of multiple communication pathways known as
d)	Computers that rely on physical memory tend to be than computers using virtual memory.
e)	bus link registers and various internal parts of the CPU together.
f)	Devices made for the older and slower ISA bus standard are connected via a controller chip.
g)	I/O system requires system bus, ports and
h)	I/O modules that control a single type of device are often called device
i)	Arithmetic Unit performs calculations related to addition, subtraction and
j)	register contains the address of the current program instruction or the next instruction to be executed.
k)	The processor fetches instructions from one at a time.
1)	The processing required for a single instruction is called an instruction
m)	bus carries signals from a single specific source to a single specific destination.
n)	bus requires addressing signals on the bus to identify the desired destination that is being pinpointed by the source at a particular time.
0)	replaces IDE and is used primarily as an interface for magnetic and optical disk storage devices.
p)	Devices that can be added and removed at any time without powering down the system are known as

CONFIDENTIAL DAT10703

	q)	PCIe is designed as a high-speed replacement for the PCI andstandards.
	r)	bus requires a system shut down for the device to be detected by the computer.
	s)	Hexadecimal number system uses hexadecimal digit.
	t)	A part in an instruction which specifies the operation to be performed is known as
SECT	TION	B (80 MARKS)
Q2	(a)	Compare between RISC and CISC instruction sets by filling in Table Q2(a) . (5 marks)
	(b)	Calculate the number of instructions cycles required to perform the calculation in Figure Q2(b).
		(1 mark)
	(c)	Examine the category of opcode involved for calculation in Q2(b) . (2 marks)
	(d)	Determine the instructions involved for calculation in Q2(b). (3 marks)
	(e)	Convert the calculation in Q2(d) into mnemonics. (3 marks)
	(f)	Explain TWO (2) disadvantages of the RISC instruction set. (2 marks)
Q3	(a)	Determine the registers required for the instruction in Figure Q3(a) . (3 marks)
	(b)	Interpret the output of the instruction set in Q3(a). (1 mark)
	(c)	List SEVEN (7) registers available in the CPU. (7 marks)
	(d)	Explain FIVE (5) types of registers available in the CPU. (5 marks)

CONFIDENTIAL

DAT10703

	(e)	Explain THREE (3) conditions the program execution will halt. (3)	3 marks)
Q4	(a)	Explain how memory devices are organized into a hierarchy based on the loc reference.	cality of
	(b)	Determine FOUR (4) criteria which affect the USB drive classification in the hierarchy.	memory marks)
	(c)	List ONE (1) example of a memory device from each level of the memory his by filling in Table Q4(c) .	ierarchy marks)
	(d)	Describe the processes of the memory access cycle by filling in Table Q4(d) . (8	3 marks)
	(e)	Conclude THREE (3) benefits of storing data on hard disk instead of USB draccording to the memory hierarchy level.	rive 3 marks)
	(f)	Compare internal memory and external memory by filling in Table Q4(f).	marks)
Q5	(a)	Sketch the architecture of input and output system. (3	marks)
	(b)	Explain why I/O module is required in I/O architecture. (2	! marks)
	(c)	Explain FIVE (5) characteristics of Interrupt Initiated I/O. (5)	marks)
	(d)	Compare Programmed I/O and Direct Memory Access by filling in Table Q5 (5	(d) . 5 marks)
	(e)	Explain FOUR (4) benefits of having separate I/O controllers by filling in Q5(e).	
	(f)	Explain THREE (3) possible forms which the I/O module could be.	marks)

-END OF QUESTIONS -

4

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023 COURSE NAME: COMPUTER ARCHITECTURE

PROGRAMME CODE: DAT COURSE CODE: DAT 10703

Table Q2(a)

CISC	RISC
1001.009 (59)	

totalDays = totalWeeks x 7

Figure Q2(b)

I	¶em	or	У		
200	1	5	1	2	Load 512
201	5	5	1	3	Add 513
202	2	5	1	4	Store 514
512	0	1	4	3	
513	0	0	0	1	
514	0	0	5	0	
2.00		Fi	gu	re Ç	23(a)

Table O4(c)

(P. C.)
Example

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023 COURSE NAME: COMPUTER ARCHITECTURE PROGRAMME CODE: DAT COURSE CODE: DAT 10703

Table Q4(d)

Cycle	Description	

Table Q4 (f)

	Internal Memory	External Memory
Storage capacity		
Physical form / Material		

Table Q5 (d)

	Programmed I/O	Direct Memory Access
Trigger		
Component responsible for Data Transfer		
CPU involvement (Yes/ No)		
CPU busy waiting (Yes / No)		
Direct I/O to memory access (Yes/No)		

Table Q5 (e)

Benefit	Explanation		