

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER II **SESSION 2022/2023**

COURSE NAME

: ANALOG ELECTRONICS

COURSE CODE

: BEJ 10503 / BEV 10503

PROGRAMME CODE : BEJ/BEV

EXAMINATION DATE : JULY / AUGUST 2023

**DURATION** 

3 HOURS :

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

STUDENTS ARE PROHIBITED TO 3. CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES **DURING THE EXAMINATION** CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES



CONFIDENTIAL

## CONFIDENTIAL

#### BEJ10503/BEV10503

- Q1 (a) (i) In your own words, define the intrinsic semiconductor and acceptor atoms. (2 marks)
  - (ii) Differentiate between p-type semiconductors and n-type semiconductors.

    (4 marks)
  - (iii) Show how to forward-biased a diode and draw the direction of the current flow. (2 marks)
  - (b) The input voltage, V<sub>i</sub>(t) = 5sin(ωt) V, is applied to the circuit shown in Figure Q1(b). Assume the diodes are ideal.
    - (i) Calculate the output voltage, V<sub>0</sub>(t) during positive and negative cycles. Show all steps clearly.
       (9 marks)
    - (ii) Sketch the output voltage,  $V_o(t)$  with respect to the input voltage,  $V_i(t)$ . (4 marks)
  - (c) For the circuit shown in **Figure Q1(c)**, assume that the diode is ideal and  $V_{DC} = 2 \text{ V}$ .
    - (i) Calculate the output voltage  $V_o$  and the capacitor voltage,  $V_c$  for the input shown. (8 marks)
    - (ii) Sketch and label the output voltage,  $V_o$  waveform. (2 marks)
- Q2 A common emitter voltage divider bias amplifier circuit is depicted in Figure Q2. Given that  $\beta = 150$ ,  $V_{CC} = 20$  V,  $V_{BE} = 0.7$  V,  $R_1 = 15$  k $\Omega$ ,  $R_2 = 5$  k $\Omega$ ,  $R_C = 3$  k $\Omega$  and  $R_E = 1.5$  k $\Omega$ .
  - (a) By using approximate analysis, determine the operating points I<sub>BQ</sub>, I<sub>CQ</sub>, I<sub>EQ</sub>, V<sub>CEQ</sub>, V<sub>B</sub>, and r<sub>e</sub>. Show all the calculations.
    (13 marks)
  - (b) Sketch and label clearly the AC equivalent circuit of Figure Q2 using  $r_e$  model. Assume that  $r_o = \infty$ . (3 marks)
  - (c) Based on **Q2(b)**, calculate the input impedance, Z<sub>i</sub>, output impedance, Z<sub>o</sub> and voltage gain, A<sub>v</sub>.

    (9 marks)
  - (d) Determine the current gain,  $A_i$  if  $r_0 = 50 \text{ k}\Omega$ . (4 marks)

## CONFIDENTIAL

#### BEJ10503/BEV10503

Q3 A self-bias circuit configuration of a depletion n-channel MOSFET is shown in Figure Q3.

(a) Find the operating points of the transistor, I<sub>DQ</sub> and V<sub>GSQ</sub> using a graphical method. (Draw the transfer characteristics and the network equation on the same graph paper).

(11 marks)

(b) Obtain V<sub>DSQ</sub>.

(3 marks)

(c) Calculate the transconductance, gm.

(2 marks)

(d) Sketch the AC small-signal equivalent circuit of Figure Q3 with bypass source resistance, R<sub>s</sub>.

(3 marks)

(e) Assuming the admittance equivalent circuit parameter  $y_{os} = 20 \mu S$ , calculate the input impedance,  $Z_i$ , output impedance,  $Z_o$  and voltage gain,  $A_v$ .

(8 marks)

Q4 (a) Draw a basic Class B push-pull amplifier that uses two dc power supplies of  $\pm 16$  V and a load resistor of 20  $\Omega$ .

(2 marks)

- (b) If the output signal in Q4(a) has a peak value of 12 V, determine:
  - (i) The efficiency.

(5 marks)

(ii) The dissipated power.

(2 marks)

(c) The output waveform in the Class B amplifier in Q4(a) will have crossover distortion. Illustrate and explain the crossover distortion and suggest a method to minimize or eliminate it.

(4 marks)

- END OF QUESTIONS -



### FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2022/2023

**COURSE NAME** 

: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ/BEV

COURSE CODE

: BEJ10503/BEV10503

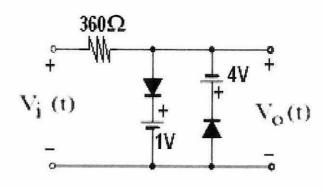
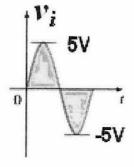




Figure Q1(b)



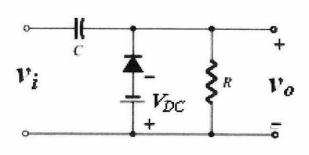



Figure Q1(c)

### FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2022/2023

COURSE NAME

: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ/BEV

COURSE CODE

: BEJ10503/BEV10503

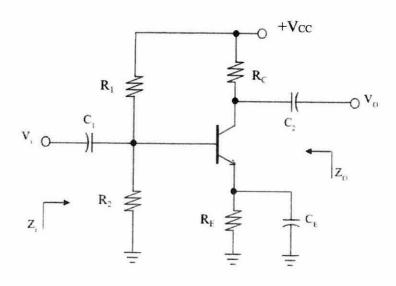



Figure Q2

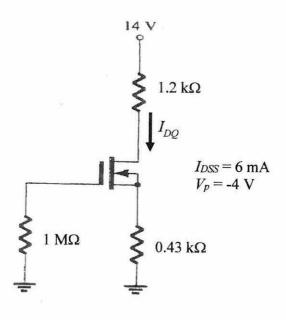



Figure Q3