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INSTRUCTION 1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS
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Q1 (a) leenf(x ¥,z) =3x% - 2y3 4+ 2%, x = 2¢t, y = e', z =sint. Use Chain Rule
to ﬁnd—
(6 marks)

(®)  Find g—i and S—i if f(x,y) is implicitly defined as a function of x and y for

z° +ye*® = zsin xy® + 1.

(6 marks)
(c) Sketch and calculate the area of a region, R enclosed by the followings;

(i) Coordinate (0,0), (2,0) and (0.3).

(5 marks)
(ii) ¥y <xandy = cosx in the first quadrant.

(8 marks)

Q2 (a)  Find the surface area of the part of z =xp that lies in the cylinder x* + 3 =16 in
the first quadrant.
(9 marks)

(b)  Find the mass of the solid bounded by z = 4—x* + »* and below by xy-plane if the
density of the solid is given by &(x,y,z) =2+ x+ y.
(8 marks)

(¢)  Find the volume of the solid that lies between a sphere x’+3" +2z°=9 and
x*+y*+2* =25 in the region y>0 and z>0,

(8 marks)
Q3 (a) Verify Green’s theorem for the line integral @(x —y)dx+(x+y)dy, where C
c
is the unit square consisting of vertices (0,0), (1,0), (1,1) and (0,1).
(16 marks)

(b)  Given vector field F =xi+ yj and curve C along the line segment from (0,0) to
(3.3).

(i) Show that F is a conservative vector field.
(1 mark)

(ii) Then, evaluate the work done by vector field F along the curve C using
potential function.
(4 marks)
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(iif) Compare your answer in Q3(b)(ii) using the line integral over the simplest
path.

(4 marks)

Q4 (a) Differentiate between Gauss’s theorem and Stokes’ theorem.
(2 marks)

(®)  Given that o is the surface of the solid G enclosed by cone z=4—./x+ ¥
and plane z = (.

(i) Compute the flux of water flowing through the cone’s and the circle’s

surfaces if the velocity vector, F = 3xi + 3yj + 6k. Assume that the unit
normal vector is oriented outward.

(8 marks)
(ii) Evaluate j I F -fds by using Gauss’s theorem.
(4 marks)
(¢) Let o be the portion of paraboloid z = 4 — x2 — y2, z > 0, and oriented outward.
Suppose that the curve C is the boundary of o in the xy-plane and the force field is
given by F = 2zi + 3xj + 5yk.

(i) Calculate the work done by the force field along curve C.
(5 marks)

(1)  Verify Stokes’ Theorem.
(6 marks)

-END OF QUESTIONS-
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ENGINEERING MATHEMATICS Il

FORMULAS

Polar coordinate
x=rcos6, y=rsinb, §=tan"'(y/x),and [[ f(x.y)dd = [[ £(r.0) r dr dO
R R

Cylindrical coordinate
x=rcos f, y=rsin, z =z and m’f(x,y,z)dV=”jf(r,e,z)rdzdrde
G r

Spherical coordinate
x = psingcosf, y=psingsing, z=pcosg, then x* + ) + 2> = p*, for 0<0<2x, 0<g<r,

and [[[ f(x,y.2)dV = [[[ f(p.$.0)p” sing dp dpd&
G

G
A=([a4
R
m = [[5(x,y)dA4 . where &(x,y) is a density of lamina
R

v =|[ fx.y)d
R

= a

m= J‘”c‘i(x,y,z)dV

If /is a differentiable function of x, y and z, then the

Gradient of f, grad f(x, y,2)=Vf(x.y.z)= @( él_,_é

If F(x, y,z)=Mi+N j+ Pk is a vector field in Cartesian coordinate, then the

oM aN oP

Divergence of F(x,y,z), divF=V-F=—+—+— Curl of F(x,,2),
Ox ay oz
i ] k
culF=vxF=|2 2 2 {@_B_N i [@_aﬂjﬁ oN _oM )
x o & (o oz) \&x oz) \ax o
M N P

F is a conservative vector field if Curl of F = 0.
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Surface Integral

Gauss’s Theorem

J;JF-nd9=_[[IV-FdV

Stokes’ Theorem
H(VxF)ondS ={Fedr
S (&

Identities of Trigonometry and Hyperbolic
Trigonometric Functions

cos’ x+sinx =1

sin2x = 2sinxcosx

cos2x =cos’ x—sin’ x
=2cos’ x—1
=1-2sin’x

1+tan’ x =sec’ x

1+cot’ x =cse’x

2tan x

1-tan’x

tanx ttany

IFtanxtany

tan2x =

tan(x + y) =

sin(x * y) = sin xcos y +cos xsin y
cos(x+ y)=cosxcos y Fsinxsin y
2sin axcos bx = sin(a + b)x +sin(a - b)x
2sin axsin bx = cos(a — b)x —cos(a + b)x

2cos ax cos bx = cos(a—b)x + cos(a + b)x

Let S be a surface with equation z = g(x, ¥) and let R be its projection on the xy-plane.

_[ff(x,}’,z) ds :J;J.f(xs.v,g(x,y))\/] 4{%]2 +(%]_CM

Hyperbolic Functions

X ==X
) e —e
sinhx =

¥

€ +€

—-X

coshx =

cosh’ x —sinh* x =1

sinh 2x = 2sinh xcosh x

cosh2x = cosh’ x +sinh® x
=2cosh?x—1
=1+2sinh’x

1-tanh’ x =sech’x

coth’ x—1 =csch’x

2tanh x

1+tanh® x

tanh x + tanh y

1+ tanh x tanh y

sinh(x * y) = sinh xcosh y + cosh xsinh y

tanh2x =

tanh(x + y) =

cosh(x £ y) = cosh xcosh y £ sinh xsinh y
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The derivative of f(x) with respect to x
Sx+h) - f(x)
h

f.(x) =1im

Indefinite Integrals

n+l

Jx"dx= -

+C, n#—1
n+1

[ %dx =In|x|+C
jcosxdxz sinx+C
_[sin xdx=—cosx+C
jsecz xdx=tanx+C
Icscz xdx=—cotx+C
Isecxtallxdxz secx+C
Icscxcotxdx: —csex+C
[edx=e+C
Icoshxdxz sinhx+C
Isinhxdbc =coshx+C

I sech’xdx =tanhx+C
J.cschzxdx =—cothx+C

jsechxtanhxdxz —sechx+C

Indefinite Integrals and Integration of Inverse Functions

Integration of Inverse Functions

2

IJ—dx sin~ ( )+C X <a
j dx cos( J+C, ¥’ <d?
74
1 1. =
J s——dx=—tan"| — [+C
a +Xx a a

> dx = cot ](x]+C
a

e

1 -1 X 2 2

I+&=—sec ]
|x|Vx?*—a’ a a

—csc —)+C, =gt

j!xl\/: a
IJ_ =sinh™ ( +C
jmdx cosh[ ]+c x>a>0

Ll
2+C, O<x<a
a

dx = lsech

J-le faz_xz a
—c:sclf1
J.IxI\/a +x

; ltanh"(i)+(j', S
J L a

/% Lcoth'(£J+C, ¥ >a
a a

+C, x=#0

a
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