

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

: MULTIVARIABLE CALCULUS /

ENGINEERING MATHEMATICS III

COURSE CODE

BEE 20303 / BEE 21503

PROGRAMME CODE :

BEJ / BEV

EXAMINATION DATE

JULY/AUGUST 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

TERBUKA

CONFIDENTIAL

BEE 20303/BEE 21503

Q1 (a) Given $f(x, y, z) = 3x^2 - 2y^3 + z^2$, x = 2t, $y = e^t$, $z = \sin t$. Use Chain Rule to find $\frac{df}{dt}$.

(6 marks)

(b) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if f(x,y) is implicitly defined as a function of x and y for $z^2 + ye^{xz} = z\sin xy^2 + 1$.

(6 marks)

- (c) Sketch and calculate the area of a region, R enclosed by the followings;
 - (i) Coordinate (0,0), (2,0) and $(0,\frac{1}{2})$.

(5 marks)

(ii) $y \le x$ and $y = \cos x$ in the first quadrant.

(8 marks)

Q2 (a) Find the surface area of the part of z = xy that lies in the cylinder $x^2 + y^2 = 16$ in the first quadrant.

(9 marks)

(b) Find the mass of the solid bounded by $z = 4 - x^2 + y^2$ and below by xy-plane if the density of the solid is given by $\delta(x, y, z) = 2 + x + y$.

(8 marks)

(c) Find the volume of the solid that lies between a sphere $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 25$ in the region $y \ge 0$ and $z \ge 0$.

(8 marks)

- Q3 (a) Verify Green's theorem for the line integral $\oint_C (x-y)dx + (x+y)dy$, where C is the unit square consisting of vertices (0,0), (1,0), (1,1) and (0,1).
 - (b) Given vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ and curve C along the line segment from (0,0) to (3,3).
 - (i) Show that F is a conservative vector field.

(1 mark)

(ii) Then, evaluate the work done by vector field \mathbf{F} along the curve C using potential function.

(4 marks)

BEE 20303/BEE 21503

(iii) Compare your answer in Q3(b)(ii) using the line integral over the simplest path.

(4 marks)

Q4 (a) Differentiate between Gauss's theorem and Stokes' theorem.

(2 marks)

- (b) Given that σ is the surface of the solid G enclosed by cone $z = 4 \sqrt{x^2 + y^2}$ and plane z = 0.
 - (i) Compute the flux of water flowing through the cone's and the circle's surfaces if the velocity vector, $\mathbf{F} = 3x\mathbf{i} + 3y\mathbf{j} + 6\mathbf{k}$. Assume that the unit normal vector is oriented outward.

(8 marks)

(ii) Evaluate $\iint_{\sigma} \vec{F} \cdot \hat{n} ds$ by using Gauss's theorem.

(4 marks)

- (c) Let σ be the portion of paraboloid $z = 4 x^2 y^2$, $z \ge 0$, and oriented outward. Suppose that the curve C is the boundary of σ in the xy-plane and the force field is given by $\mathbf{F} = 2z\mathbf{i} + 3x\mathbf{j} + 5y\mathbf{k}$.
 - (i) Calculate the work done by the force field along curve C.

(5 marks)

(ii) Verify Stokes' Theorem.

(6 marks)

-END OF QUESTIONS-

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2022/2023

PROGRAMME CODE: BEJ/BEV

COURSE NAME: MULTIVARIABLE CALCULUS/ ENGINEERING MATHEMATICS III

COURSE CODE: BEE 20303/BEE 21503

FORMULAS

Polar coordinate

$$x = r \cos \theta$$
, $y = r \sin \theta$, $\theta = \tan^{-1}(y/x)$, and $\iint_R f(x, y) dA = \iint_R f(r, \theta) r dr d\theta$

Cylindrical coordinate

$$x = r\cos\theta$$
, $y = r\sin\theta$, $z = z$ and
$$\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$$

Spherical coordinate

$$x = \rho \sin\phi \cos\theta, \ y = \rho \sin\phi \sin\theta, \ z = \rho \cos\phi, \text{ then } x^2 + y^2 + z^2 = \rho^2, \text{ for } 0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi,$$
 and
$$\iiint_G f(x, y, z) dV = \iiint_G f(\rho, \phi, \theta) \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$$

$$A = \iint_{R} dA$$

$$m = \iint_R \delta(x, y) dA$$
, where $\delta(x, y)$ is a density of lamina

$$V = \iint\limits_R f(x,y) \, dA$$

$$V = \iiint_G dV$$

$$m = \iiint_G \delta(x, y, z) dV$$

If f is a differentiable function of x, y and z, then the

Gradient of
$$f$$
, grad $f(x, y, z) = \nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$

If $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field in Cartesian coordinate, then the

Divergence of F
$$(x, y, z)$$
, div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$ Curl of $\mathbf{F}(x, y, z)$,

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial Z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial Z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

F is a conservative vector field if Curl of $\mathbf{F} = 0$.

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2022/2023

PROGRAMME CODE: BEJ/BEV

COURSE NAME: MULTIVARIABLE CALCULUS/ ENGINEERING MATHEMATICS III

COURSE CODE: BEE 20303/BEE 21503

Surface Integral

Let S be a surface with equation z = g(x, y) and let R be its projection on the xy-plane.

$$\iint_{S} f(x, y, z) dS = \iint_{R} f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

Gauss's Theorem

$$\iint_{S} \mathbf{F} \bullet \mathbf{n} dS = \iiint_{G} \nabla \bullet \mathbf{F} dV$$

Stokes' Theorem

$$\iint_{S} (\nabla \times \mathbf{F}) \bullet \mathbf{n} dS = \oint_{C} \mathbf{F} \bullet dr$$

Identities of Trigonometry and Hyperbolic

Trigonometric Functions

$$\cos^2 x + \sin^2 x = 1$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$=2\cos^2 x-1$$

$$=1-2\sin^2 x$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$cos(x \pm y) = cos x cos y \mp sin x sin y$$

$$2\sin ax\cos bx = \sin(a+b)x + \sin(a-b)x$$

$$2\sin ax\sin bx = \cos(a-b)x - \cos(a+b)x$$

$$2\cos ax\cos bx = \cos(a-b)x + \cos(a+b)x$$

Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sinh 2x = 2\sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$= 2\cosh^2 x - 1$$

$$=1+2\sinh^2 x$$

$$1-\tanh^2 x = \operatorname{sech}^2 x$$

$$\coth^2 x - 1 = \operatorname{csch}^2 x$$

$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

$$sinh(x \pm y) = sinh x cosh y \pm cosh x sinh y$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2022/2023

PROGRAMME CODE: BEJ/BEV

COURSE NAME: MULTIVARIABLE CALCULUS/ ENGINEERING MATHEMATICS III

COURSE CODE: BEE 20303/BEE 21503

The derivative of f(x) with respect to x

$$f_x(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Indefinite Integrals and Integration of Inverse Functions

Indefinite Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \csc x \cot x dx = -\csc x + C$$

$$\int e^x dx = e^x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \operatorname{sech}^2 x dx = \tanh x + C$$

$$\int \operatorname{sech}^2 x dx = -\coth x + C$$

$$\int \operatorname{sech}^2 x dx = -\coth x + C$$

$$\int \operatorname{sech}^2 x dx = -\coth x + C$$

Integration of Inverse Functions

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 < a^2$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 < a^2$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{a^2 + x^2} dx = \cot^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{|x|\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 > a^2$$

$$\int \frac{1}{|x|\sqrt{x^2 - a^2}} dx = \frac{1}{a} \csc^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 > a^2$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \sinh^{-1}\left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \cosh^{-1}\left(\frac{x}{a}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{|x|\sqrt{a^2 - x^2}} dx = \frac{1}{a} \operatorname{sech}^{-1}\left|\frac{x}{a}\right| + C, \quad 0 < x < a$$

$$\int \frac{1}{|x|\sqrt{a^2 + x^2}} dx = \frac{1}{a} \operatorname{csch}^{-1}\left|\frac{x}{a}\right| + C, \quad x \neq 0$$

$$\int \frac{1}{|x|\sqrt{a^2 + x^2}} dx = \frac{1}{a} \operatorname{csch}^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 < a^2$$

$$\int \frac{1}{a^2 - x^2} dx = \begin{cases} \frac{1}{a} \tanh^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 > a^2 \\ \frac{1}{a} \coth^{-1}\left(\frac{x}{a}\right) + C, \quad x^2 > a^2 \end{cases}$$