

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

ELECTRIC CIRCUIT I

COURSE CODE

: BEJ 10303

PROGRAMME CODE

: BEJ

EXAMINATION DATE :

JULY / AUGUST 2023

**DURATION** 

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2.THIS FINAL EXAMINATION

CONDUCTED VIA **CLOSED BOOK.** 

3.STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES



IS

## CONFIDENTIAL

BEJ 10303

It is assumed that a 12 V automotive battery is completely discharged and at Q1 some reference time t = 0, is connected to a battery charger for the next eight (8) hours. It is also assumed that the charging rate is given as follows.

$$i(t) = \begin{cases} 8e^{-t/_{3600}} A & 0 \le t \le 8hours \\ 0 & otherwise \end{cases}$$

For these eight (8) hours time intervals, compute the total charge delivered to the battery and the total energy supplied.

(12 marks)

(b) Determine the power absorbed by the voltage-controlled voltage source (VCVS), Vd shown in Figure Q1(b).

(6 marks)

Q2 (a) Apply Kirchoff voltage law (KVL) to determine the voltage between two (2) points,  $a - e(V_{a-e})$  and  $e - c(V_{e-c})$ , for the circuit in Figure Q2(a).

(10 marks)

- For the circuit in Figure Q2(b), prove that the value of  $i_s = 1.2 \text{ mA}$ (12 marks)
- Q3 (a) With nodal analysis, formulate the matrix equation for the node voltages of  $v_1$ and  $v_2$  in Figure Q3(a). (12 marks)

For the circuit in Figure Q3(b), calculate the value of  $V_0$  using mesh analysis. (b) (16 marks)

### CONFIDENTIAL

BEJ 10303

Q4 (a) Find the current measured by the ammeter in Figure Q4(a) using the superposition theorem.

(11 marks)

- (b) Find the value of  $R_{LOAD}$  for maximum power transfer in the circuit of Figure Q4(b) and the maximum power that can be transferred to this load. (12 marks)
- Q5 (a) Clarify instantaneous power, p(t) absorbed by an element. (3 marks)
  - (b) Based on the trigonometric identity,

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)],$$

find the instantaneous power and the average power absorbed if,

$$v(t) = 120\cos(377t + 45^{\circ})$$
 and  $i(t) = 10\cos(377t - 10^{\circ})$  (6 marks)



**END OF QUESTIONS** 

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE : BEJ

COURSE CODE

: BEJ 10303



Figure Q1(b)



Figure Q2(a)

**TERBUKA** 

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE : BEJ

COURSE CODE : BEJ 10303



Figure Q2(b)



Figure Q3(a)

TERBUKA

SEMESTER / SESSION : SEM II / 2022/2023 COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE : BEJ

COURSE CODE

: BEJ 10303



Figure Q3(b)



**TERBUKA** 

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE : BEJ

COURSE CODE : BEJ 10303

