

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

CONTROL SYSTEM

COURSE CODE

BEV 30503

PROGRAMME CODE

BEV

:

EXAMINATION DATE

JULY/AUGUST 2023

DURATION

3 HOURS

INSTRUCTION

- : 1. ANSWER ALL QUESTIONS
 - 2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.
 - 3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

TERBUKA

CONFIDENTIAL

CONFIDENTIAL

BEV 30503

Q1 List down of the EIGHT (8) components in control system. (a)

(4 marks)

(b) Draw the block diagram for a system control in Figure Q1(b).

(4 marks)

Obtain the transfer function $\frac{\theta_L(S)}{E_a(S)}$ of the electromechanical system given in **Figure** (c) Q1(c).

(17 marks)

Q2 (a) Define a stable and an unstable system based on complex plane.

(2 mark)

Describe absolute stability, relative stability, and stability margin. (b)

(3 marks).

Determine the value of K_p and T_i using the Routh Hurwitz criterion for the following (c) system to be stable.

$$G(s) = \frac{K_p \left(1 + \frac{1}{T_i s}\right) \left(\frac{1}{s(s+1)(s+3)}\right)}{1 + K_p \left(1 + \frac{1}{T_i s}\right) \left(\frac{1}{s(s+1)(s+3)}\right)}$$

(15 marks)

(d) Show that the system with characteristic equation bellows is unstable using the S-Plane / Complex Plane.

$$(s+3)(s^3-3s^2+s+5)(s+2)$$

(5 marks)

The second order system has closed loop transfer function as follows: $G(s) = \frac{K_c}{s^2 + (2+b)s + 2b + K_c}$ Q3 (a)

$$G(s) = \frac{K_c}{s^2 + (2+b)s + 2b + K_c}$$

Consider that percentage of maximum overshoot (%OS) of its response is 5% and settling time $\pm 2\%$ band ($t_s \pm 2\%$) is 600 msec. Determine damping ratio (ζ), natural undamped frequency (ω_n) , b and K_c .

(10 marks)

Determine the position error constant (K_p) , velocity error constant (K_v) , and (b) acceleration error constant (K_a) for the system in Figure Q3(b).

(6 marks)

(c) Explain gain margin and phase margin using a bode plot.

(3 marks)

CONFIDENTIAL

BEV 30503

Sketch bode plot for magnitude and phase angle for the following system: $G(s) = \frac{a}{s+a}$ (d)

$$G(s) = \frac{a}{s+a}$$

(6 marks)

(a) Describe FOUR (4) observations related to Root Locus Plot than can be achieved from Q4 the closed loop transfer function of a system as below:

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

(4 marks)

(b) Sketch the root loci for the system shown in Figure Q4(b).

(13 marks)

Consider the following system is controlled using Proportional, Integral and (c) Derivative (PID),

$$G(s) = \frac{1}{s(s^2 + 4s + 3)}$$

Determine:

- Proportional gain (K_P)
- (ii) Integral gain (K_I)
- (iii) Derivative gain (K_D) .

(8 marks)

-END OF QUESTIONS-

3

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023 COURSE NAME

: CONTROL SYSTEM

PROGRAMME CODE: BEV

COURSE CODE

: BEV 30503

Figure Q1(b)

Figure Q1(c)

Figure Q3(b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

COURSE NAME : CONTROL SYSTEM

PROGRAMME CODE : BEV

COURSE CODE : BEV 30503

Figure Q4(b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2022/2023

PROGRAMME CODE: BEV

COURSE NAME : CONTROL SYSTEM

COURSE CODE : BEV 30503

FORMULAE

Table A Laplace transform table

f(t)	F(s)
$\delta(t)$	ì
u(t)	<u>1</u>
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{-at}u(t)$	$\frac{1}{s+a}$
sin $\omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$
$e^{-at}\sin\omega t u(t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega tu(t)$	(s+a)
	$(s+a)^2+\omega^2$

TABLE 2

2nd order prototype system equation.

$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$T_r = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$
$\mu_p = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d}$
$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma_d}$ (2% criterion)	$T_s = \frac{3}{\zeta \omega_n} $ (5% criterion)

