

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

COASTAL AND HARBOUR

ENGINEERING

COURSE CODE

: BFW 40303

PROGRAMME CODE :

BFF

EXAMINATION DATE :

JULY/ AUGUST 2023

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ANY **FOUR (4)** QUESTIONS

ONLY.

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PAGES

CONFIDENTIAL

BFW40303

Q1 (a) It is a remarkable fact that beaches around the world are quite similar in composition and shape. The beach profile, which is a cross section of the beach taken perpendicular to the shoreline, is generally composed of four sections; offshore, nearshore, beach and coast. With aid of sketch, explain in detail development of all these sections.

(7 marks)

(b) On the basis of your knowledge, list and discuss **THREE** (3) coastal erosion techniques for an eroding sandy beach. Suggest **ONE** (1) new technique can be applied for coastal erosion protection in sandy coast.

(8 marks)

- (c) A sinusoidal wave with amplitude a = 0.25 m and wave period T = 7.5 s propagates over a depth d = 6 m. Calculate horizontal displacement ξ and vertical displacement ζ at:
 - (i) Depth z = 0 and phase angle $\theta = \frac{\pi}{2}$
 - (ii) Depth z = -d and phase angle $\theta = \frac{\pi}{2}$

(10 marks)

- Q2 (a) With aid of sketch, briefly explain the wave processes of
 - (i) Breaking
 - (ii) Refraction
 - (iii) Diffraction
 - (iv) Reflection

(12 marks)

(b) A 2.0 m high deepwater wave is propagating towards a 1:20 beach, with its crest making an angle of 30° with shoreline. As the wave moves into shallower water, its speed reduces from 10 m/s to 5 m/s. Compute the wave height and depth at breaking.

(13 marks)

BFW40303

Q3 (a) Explain **THREE** (3) controlled factors in wind generated waves and briefly describe the wave celerity, wind direction and wave frequency measurement on site.

(6 marks)

- (b) FIGURE Q3(b) shows ocean surface elevation recorded during an event.

 Determine
 - (i) Significant wave height H_s
 - (ii) Maximum wave height H_{max}
 - (iii) Average of the highest 5% of wave height H_5

(9 marks)

(c) A wave with C_o = 15.6 m/s, mean water depth, d = 2.3 m and celerity, C = 4.75 m/s has deep water height of 2 m, period of 10 s and n = 1. Assume the wave crest in deep water are oriented at an angle of 35° with the shoreline and that the nearshore bottom contours are essentially straight and parallel to the shoreline. Determine the wave height and crest orientation with respect to the shoreline when the wave propagates into 2.3 m depth of water.

(10 marks)

Q4 (a) Integrated Shoreline Management Plan (ISMP) by Department of Irrigation & Drainage Malaysia is one of coastal mitigation scheme in Malaysia. Explain the ISMP purpose and how it accomplished the goal?

(10 marks)

- (b) Consider the initial platform as shown in FIGURE Q4(b). The waves are from the southwest, and the headland is composed of erodible sand and very durable rock.
 Describe and sketch the resulting planforms that might you expect:
 - (i) Just after all the sand has been eroded

(7 marks)

(ii) A considerable time after all the sand has been eroded without any significant additional material supplied by the headland.

(8 marks)

3

CONFIDENTIAL

BFW40303

- Q5 (a) Classify the following small amplitude wave based on its relative depth.
 - (i) Wave with height H = 0.5 m, and length L = 150 m, propagating over a depth d = 10 m.
 - (ii) Wave with height H = 0.25 m, and length L = 250 m, propagating over a depth d = 6 m.

(6 marks)

(b) The geometric relationship of moon and sun locations on the Earth's surface results in creation of three different types of tides. With the aid of sketch, explain THREE
 (3) types of tides in the Earth – moon system.

(9 marks)

(c) Determine the volume of fill material V required to nourish a beach with a berm height B = 5.0 m and width Y = 45 m where significant wave height H_s = 3.5 m. The depth of closure H = 6.75 H_s , and the sedimentary parameters are $\sigma_{\varphi b}$ = 0.75, $\sigma_{\varphi n}$ = 0.60, $M_{\varphi b}$ = 2.30, $M_{\varphi n}$ = 1.85. Ignore the renourishment factor R_J .

(10 marks)

-END OF QUESTIONS-

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

Figure Q3(b)

Figure Q4(b): Eroding Headland

BFW40303

FINAL EXAMINATION

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

EQUATION:

$$H_{i} = H_{o}K_{s}K_{r}$$
 where, $K_{s} = \frac{C_{o}}{\left[\frac{4\pi d}{L}\right]}$, and $K_{r} = \sqrt{\frac{\cos \alpha_{o}}{\cos \alpha}}$
$$\sqrt{C\left[1 + \frac{\left(\frac{4\pi d}{L}\right)}{\sinh\left(\frac{4\pi d}{L}\right)}\right]}$$

Unrefracted deepwater wave height $H'_o = H_o K_r$

Snell's law :
$$\frac{\sin \alpha}{C} = \frac{\sin \alpha_o}{C_o}$$

$$T_m = 0.82T_p$$

$$R^* = \frac{R_c}{T_m \sqrt{gH_s}}$$

$$Q^* = Ae^{\left(\frac{-BR^*}{r}\right)}$$

$$q = Q^* T_m g H_s$$

$$M_{50} = \frac{\rho_r H_s^3}{K_D \cot \alpha \Delta^3}$$

$$D_{50} = \left(\frac{M_{50}}{\rho_r}\right)^{\frac{1}{3}}$$

$$\Delta = \frac{\rho_r}{\rho_w} - 1$$

BFW40303

FINAL EXAMINATION

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

EQUATION:

Characteristic	Transitional water $(0.04 < d/L < 0.5)$	Deep water $(d/L_o \ge 0.5)$
Wave celerity	$C = \frac{L}{T} = \frac{gT}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)$	$C_o = \frac{L}{T} = \frac{gT}{2\pi}$
Wave length	$L = \frac{gT^2}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)$	$L_o = \frac{gT^2}{2\pi}$

Displacement

a. horizontal
$$\xi = -\frac{H}{2} \frac{\cosh \left[2\pi \frac{\left(z+d\right)}{L} \right]}{\sinh \left(2\pi \frac{d}{L} \right)} \sin \theta \qquad \qquad \xi = -\frac{H}{2} e^{\frac{2\pi z}{L}} \sin \theta$$
 b. vertical
$$\zeta = \frac{H}{2} \frac{\sinh \left[2\pi \frac{\left(z+d\right)}{L} \right]}{\sinh \left(2\pi \frac{d}{L} \right)} \cos \theta \qquad \qquad \zeta = \frac{H}{2} e^{\frac{2\pi z}{L}} \cos \theta$$

b. vertical
$$\zeta = \frac{H}{2} \frac{\sinh \left[2\pi \frac{(z+d)}{L} \right]}{\sinh \left(2\pi \frac{d}{L} \right)} \cos \theta \qquad \qquad \zeta = \frac{H}{2} e^{\frac{2\pi z}{L}} \cos \theta$$

Velocity

a. horizontal
$$u = \frac{H}{2} \frac{gT}{L} \frac{\cosh \left[2\pi \frac{\left(z+d\right)}{L} \right]}{\cosh \left(2\pi \frac{d}{L} \right)} \cos \theta \qquad u = \frac{\pi H}{T} e^{\frac{2\pi z}{L}} \cos \theta$$

b. vertical
$$w = \frac{H}{2} \frac{gT}{L} \frac{\sinh \left[2\pi \frac{(z+d)}{L} \right]}{\cosh \left(2\pi \frac{d}{L} \right)} \sin \theta \qquad w = \frac{\pi H}{T} e^{\frac{2\pi z}{L}} \sin \theta$$

Acceleration

a. horizontal
$$a_{x} = \frac{g\pi H}{L} \frac{\cosh\left[2\pi\frac{\left(z+d\right)}{L}\right]}{\cosh\left(2\pi\frac{d}{L}\right)} \sin\theta \qquad a_{x} = 2H\left(\frac{\pi}{T}\right)^{2}e^{\frac{2\pi z}{L}} \sin\theta$$
 b. vertical
$$a_{z} = -\frac{g\pi H}{L} \frac{\sinh\left[2\pi\frac{\left(z+d\right)}{L}\right]}{\cosh\left(2\pi\frac{d}{L}\right)} \cos\theta \qquad a_{z} = -2H\left(\frac{\pi}{T}\right)^{2}e^{\frac{2\pi z}{L}} \cos\theta$$

b. vertical
$$a_z = -\frac{g\pi H}{L} \frac{\sinh\left[2\pi \frac{(z+d)}{L}\right]}{\cosh\left(2\pi \frac{d}{L}\right)} \cos\theta \qquad a_z = -2H\left(\frac{\pi}{T}\right)^2 e^{\frac{2\pi z}{L}} \cos\theta$$

BFW40303

FINAL EXAMINATION

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

Table of Ratio of H_n/H_s from Rayleigh distribution

H_n/H_s
1.67
1.56
1.40
1.27
1.12
0.89
0.63

Table of Owen parameters

Structure slope	A	В
1:1.5	0.0102	20.12
1:2.0	0.0125	22.06
1:2.5	0.0145	26.10
1:3.0	0.0163	31.90
1:3.5	0.0178	38.90
1:4.0	0.0192	46.96
1:4.5	0.0215	55.70
1:5.0	0.0250	65.20

BFW40303

FINAL EXAMINATION

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME : COASTAL AND HARBOUR ENGINEERING COURSE CODE

: BFW40303

$d/L_{\rm o}$	d/L	$2\pi d/L$	$\tanh 2\pi d/L$	$\sinh 2\pi d/L$	$\cosh 2\pi d/L$
0.03000	0.07135	0.4483	0.4205	0.4634	1.1021
0.03100	0.07260	0.4562	0.4269	0.4721	1.1059
0.03200	0.07385	0.4640	0.4333	0.4808	1.1096
0.03300	0.07507	0.4717	0.4395	0.4894	1.1133
0.03400	0.07630	0.4794	0.4457	0.4980	1.1171
0.03500	0.07748	0.4868	0.4517	0.5064	1.1209
0.03600	0.07867	0.4943	0.4577	0.5147	1.1247
0.03700	0.07984	0.5017	0.4635	0.5230	1.1285
0.03800	0.08100	0.5090	0.4691	0.5312	1.1324
0.03900	0.08215	0.5162	0.4747	0.5394	1.1362
0.06000	0.1043	0.6553	0.5753	0.7033	1.2225
0.06100	0.1053	0.6616	0.5794	0.7110	1.2270
0.06200	0.1063	0.6678	0.5834	0.7187	1.2315
0.06300	0.1073	0.6739	0.5874	0.7256	1.2355
0.06400	0.1082	0.6799	0.5914	0.7335	1.2405
0.06500	0.1092	0.6860	0.5954	0.7411	1.2447
0.06600	0.1101	0.6920	0.5993	0.7486	1.2492
0.06700	0.1111	0.6981	0.6031	0.7561	1.2537
0.06800	0.1120	0.7037	0.6069	0.7633	1.2580
0.06900	0.1130	0.7099	0.6106	0.7711	1.2628
0.9000	0.9000	5.655	1.000	142.9	142.9
0.9100	0.9100	5.718	1.000	152.1	152.1
0.9200	0.9200	5.781	1.000	162.0	162.0
0.9300	0.9300	5.844	1.000	172.5	172.5
0.9400	0.9400	5.906	1.000	183.7	183.7
0.9500	0.9500	5.969	1.000	195.6	195.6
0.9600	0.9600	6.032	1.000	208.2	208.2
0.9700	0.9700	6.095	1.000	221.7	221.7
0.9800	0.9800	6.158	1.000	236.1	236.1
0.9900	0.9900	6.220	1.000	251.4	251.4

CONFIDENTIAL

TERBUKA

SEMESTER/SESSION: II/2022/2023

PROGRAMME: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE: BFW40303

Figure of breaker height index versus deepwater wave steepness

SEMESTER/SESSION: II/2022/2023

PROGRAMME : BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE: BFW40303

Figure of breaker index versus wave steepness

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

Figure of Isolines of the adjusted SPM fill factor RA

BFW40303

FINAL EXAMINATION

SEMESTER/SESSION: II/2022/2023

PROGRAMME CODE: BFF

COURSE NAME

: COASTAL AND HARBOUR ENGINEERING

COURSE CODE

: BFW40303

Table of Relationship between M_{ϕ} and σ_{ϕ} of the native material and borrow material

Case	Quadrant	Relationship of phi means	Relationship of phi standard deviations	
I	1	$M_{\phi b} > M_{\phi n}$ borrow material is finer than native material	$\sigma_{\phi b} > \sigma_{\phi n}$ borrow material is more poorly sorted than native material	
II	2	$M_{\phi b} < M_{\phi n}$ borrow material is coarser than native material		
Ш	3	$M_{\phi b} < M_{\phi n}$ borrow material is coarser than native material	$\sigma_{\phi b} < \sigma_{\phi n}$ borrow material is better sorted than native material	
IV	4	$M_{\phi b} > M_{\phi n}$ borrow material is finer than native material		