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Q1 (a) By applying the integral definition. find the Laplace transforms for each of the

following:
1 f() =12

(2 marks)
() f(O)=e®

(3 marks)

(b) Determine the Inverse Laplace transforms using a partial fraction of function
below:

_ 8+2)
P T (s2+65+8)
(5 marks)

() Determine the value of b if the function is continuous at every x.
x:
e ={, %

(5 marks)
d (i Find the first and second partial derivatives of

flx,y) = 4x3 — 5xy? + 3y3
(4 marks)

(i) A civil engineer is designing a bridge that needs to withstand the
forces of wind and traffic. The bridge deck is supported by a series
of beams, which are subject to bending under load. The deflection of
the beams is given by the equation w(x, y) = 0.01x2y? — 0.1xy3 +
0.5x® + 0.5y%, where x and y are the coordinates of a point on the
beam. Determine the second-order partial derivatives of
w(x, y) with respect to x and y.

(6 marks)

Q2 (a) By using double integrals, sketch and find the surface area of the portion of the
paraboloid z = x* + y? and below the plane z = 1.

(10 marks)

(b) You are designing a silo for the grain storage. identify the volume of geometry
bounded by tetrahedron which is enclosed by the coordinate planes and the plane
2x +y + z = 4 using triple integrals.

(15 marks)
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Q3  (a) Based on Figure Q3(a), find the mass, moments and the center of mass of the
lamina of density p(x,y) = x + y occupying the region R under the curve W=
x? in the interval 0 < x <« 2.

(10 marks)
(b) Based on the following equations, sketch the graph of two surface which are
x%+y? =9and z = y2. Then, determine the equation of the intersection using
a vector valued function.
(10 marks)
(c) Determine the velocity, speed and acceleration of a particle given by the position
function:
r(t) =3cost i+ 2sint j
(5 marks)

Q4 (a) Find the unit tangent vector and the principal unit normal vector at each point on
the graph of the vector function

R(t) =eti+e b +/2tk
(10 marks)

(b) Show that F = (y* — 2% + 3yz — 2x)i + (3xz + 2xy)j + (3xy — 2xz + 22)k is
conservative. Find:

(1) Scalar potential.

(6 marks)

(i) Work done by F in moving a particle from (1,0,1) to (2,1,3).
(4 marks)

(©) " Show that [f, F.ds = %, where F = yzi — xzj + xyk and S is the part of the
sphere x? + y2 + 22 = 1 that lies in the first octant.

(5 marks)

— END OF QUESTIONS -
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(2. 4)

=]
x!

Figure Q3(a): The lamina of density p(x,y) = x + ¥ occupying the region R under the curve
y=x

4 CONFIDENTIAL - . .

TERBUKA




CONFIDENTIAL BFC 25103
FINAL EXAMINATION
SEMESTER/SESSION SEM 2 2022/2023 PROGRAMME CODE BFF
COURSE NAME ENGINEERING COURSE CODE BFC 25103
MATHEMATICS
Formulae
Characteristic Equation and General Solution
_
R t istic .
Case ooty of the C}.xaractenstl General Solution
Equation

I m; and My : real and distinct Y=-Ae"¥ § Bpa¥

2 m;=my=m :real and equal y={d+Bx)je™

3 m=aif . imaginary y = e®(A cos Bx + B sin fx)

Particular Integral of @" +by' + cv = f(x)

: Method of Undetermined Coefficients

\ .

L f®) ¥,(%) N
Lﬂ (X)=4x" +--+4x+4, X' (Bx"+:-+Bx+B,)

|L Ce™ X' (ke™)

L Ccos fx op Csin fx x"(p cos Bx + q sin Bx)

|

Particular Integral of @" +by" + ¢y = f(x)

: Method of Variation of Parameters

Wronskian Parameter Solution ]
I _ e ) _p L) g
W= . }J u, = "dex, = chbc Yy =ty +u,y,
5
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Laplace Transforms
F n " —st
L SOk = [ f@edt = F(s)
f@©) = LYFE)} | Fe) =@y | TO F(s) = LF (D))
= L7YF(s)}
e-—as
a ‘ESI‘ H(t - a) =
1 s
% =123, ;,1—, ft—a)H (- a) e~ F(E)
1
o 5(t-a) e a8
S —a
sinat — ()5t —a) e *f(a)
s +a”
.y !
cos at s ju fu)g(t—u)du F(5).G(s)
sinh at - - = y(0) Y(s)
e
coshat —— 0 sY (5) = »(0)
S —=
e £(r) F(s—a) () s2Y(s) — sy(0) — y(0)
PO n-12,3.. | CiydF®
2 dsn _J
CONFIDENTIAL




CONFIDENTIAL BFC 25103

FINAL EXAMINATION
SEMESTER/SESSION : SEM 2 2022/2023 PROGRAMME CODE  : BFF
COURSE NAME : ENGINEERING COURSE CODE : BFC 25103

MATHEMATICS

Formulae

Tangent Plane: z — z, = £, (x,, y5) (x — x,) + 56, y0) 7 — ¥0)

Local Extreme Value: G(x,y) = f,.(x,y) X Sy (X, 7) — [ﬁcy (x, y)]2

Case G(a,b) Result

1 G(a,b) >0 f(x,y) has a local maximum value at (a,b)
fax(a, b) <0

2 G(a,b) >0 f(x,¥) has a local minimum value at (a,b)
a0, 0) >0

3 G(a,b) <0 f(x,y)has a saddle point at (a,b)

- G(a,b) =0 | inconclusive

Polar coordinate: x = rcos 6, y = rsin 6.8 = tanul(%) and

IIg fey)dA = [f, f(r,0)rdrds

Cylindrical ~ coordinate: x =rcos@. . y=rsinf, z=z, fffG i, v.2)dV =
W, f(r,6,2)d dz dr do

Spherical  coordinate:  x = p sin sin ¢ cos cos 8 . y=psinsin¢sinsing, z=p
coscos, x*+y’+z2=p’ 0«OK2m. 0« ¢<m and [f[ f(x,y,2)dV =
JI fp.¢,6)p? sin sin ¢ dpdgde

For lamina
Mass, m = [[, 8(x,y) dA
Moment of mass: y-axis: My, = [, x6(x,y) dA  x-axis, M, = I, ¥8(x,y) da

Center of mass, (gc_ y) = (]:f %)
Centroid for homogenous lamina: x = a:ea /I, xdA y= a:ea M. yda
Moment inertia;
Y-axis: I, = [[, x28(x,y) dA x-axis: Iy = [[, ¥26(x,y) dA
Z-axis (or origin): [, = [, = ffR (x*+y)6(x,y)dA=1, + L,
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For solid

Mass, m = [[[ . 6(x,y) dV
Moment of mass:

yz-plane: My, = [[[ . x 8(x,y,2) dV

xz-plane: My, = [[[ . y 8(x,y,2) dV

xy-plane: My, = [[[ . z8(x,y,2) av

Center of gravity, (g, ¥ g) = (%,%,M—;Z)

Moment inertia:
I =[], &®+2%) 8(x,y,2)dv
L= [l &% +2%) 8(x,y,2)dv
L= fffc (x* +y?) 8(x, v, 2)dv

Directional derivative: D, f(x,y) = (fei + fyJ)u

Let F(x,y,2) = Mi + Nj + Pk is vector field, then the divergence of F = 17 - F—-—+5+z—g
The curl of
Fepxi=liiz g d 0 MNP' (ap 6N) (aP BM) +(BN BM)k
ka5 ay az)' oz " 3z ox ay

Let C'is a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k, t is parameter. then

a1
The unit tangent vector; T(¢) = “T, o

The unit normal vector: N(t) = u%%
The binormal vector: B(t) = T(t) x N (t)

T'(t) i xr"" (®)||
The curvature: K = ol TOF
The radius of curvature: p=1/K

Green Theorem: 936 M(x,y) dx + N(x,y) dy = ffR . g—f—dA
Gauss Theorem: [ F-ndS = if, v.Fav
Stokes Theorem: ¢ Fdr=[[_ (VxF)-nds
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Arc length, If 7(¢) = x(t)i + y(t)j, te[a, b], then the arc length
" b 2 2
s= | Ir@iae = | JEO) + ') @

Ifr(t) = x(t)i + y(t)j + z(t)k, tela, b], then the arc length

b
s= f J(x’(t))z - (y’(t))z + (z"(t))2 dt

Trigonometric and Hyperbolic Identities

Trigonometric

Hiperbolic

cos’x+sin‘x=1

X g
’ e —e
sinhx =

—

l+tan” x =sec’ x

eX +e*

coshx =
2

cot® x +1 = cosec *x

cosh? x —sinh?x = 1

sin2x = 2sin xcosx

1 — tanh? x = sech® x

cos2x =cos*x—sin’ x

cosh? x —1 = csch? x

cos 2x =2cos 2 x—1

sinh 2x = 2sinh xcosh x

cos 2x =1—2sin % x

cosh 2x = cosh? x + sinh? x

2tan x

tan 2x = ————
l—tan’ x

cosh 2x = 2cosh? x — 1

sin (x + y) = sin xcos y + cos xsin ¥

cosh2x = 1 + 2sinh? x

cos (x + y)= cos x cos ¥y Fsin xsin y

2tanh x

tanh 26 = ——— —
| + tanh * x

. tanx+tany
~7" IFtanxtany

sinh (x + y) = sinh xcosh y + cosh xsinh v

2sin xcos y = sin (x + y)+ sin (x - y)

cosh (x + y) = cosh xcosh v+ sinh xsinh ¥
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