

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

ENGINEERING MATHEMATICS

COURSE CODE

: BFC 25103

PROGRAMME CODE :

BFF

EXAMINATION DATE :

JULY/ AUGUST 2023

DURATION

: 3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED BOOK.**

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

- Q1 (a) By applying the integral definition, find the Laplace transforms for each of the following:
 - (i) f(t) = 12.

(2 marks)

(ii) $f(t) = e^{8t}$

(3 marks)

(b) Determine the Inverse Laplace transforms using a partial fraction of function below:

$$F(s) = \frac{(s+2)}{(s^2+6s+8)}$$

(5 marks)

(c) Determine the value of b if the function is continuous at every x.

$$f(x) = \begin{cases} x, & x < -2 \\ bx^2, & x \ge -2 \end{cases}$$

(5 marks)

(d) (i) Find the first and second partial derivatives of

$$f(x,y) = 4x^3 - 5xy^2 + 3y^3$$
 (4 marks)

(ii) A civil engineer is designing a bridge that needs to withstand the forces of wind and traffic. The bridge deck is supported by a series of beams, which are subject to bending under load. The deflection of the beams is given by the equation $w(x, y) = 0.01x^2y^2 - 0.1xy^3 + 0.5x^2 + 0.5y^2$, where x and y are the coordinates of a point on the beam. Determine the second-order partial derivatives of w(x, y) with respect to x and y.

(6 marks)

Q2 (a) By using double integrals, sketch and find the surface area of the portion of the paraboloid $z = x^2 + y^2$ and below the plane z = 1.

(10 marks)

(b) You are designing a silo for the grain storage, identify the volume of geometry bounded by tetrahedron which is enclosed by the coordinate planes and the plane 2x + y + z = 4 using triple integrals.

(15 marks)

CARRELL EBAS

2

CONFIDENTIAL

Q3 (a) Based on Figure Q3(a), find the mass, moments and the center of mass of the lamina of density $\rho(x, y) = x + y$ occupying the region R under the curve $y = x^2$ in the interval $0 \ll x \ll 2$.

(10 marks)

(b) Based on the following equations, sketch the graph of two surface which are $x^2 + y^2 = 9$ and $z = y^2$. Then, determine the equation of the intersection using a vector valued function.

(10 marks)

(c) Determine the velocity, speed and acceleration of a particle given by the position function:

$$r(t) = 3\cos t \,\mathbf{i} + 2\sin t \,\mathbf{j}$$

(5 marks)

Q4 (a) Find the unit tangent vector and the principal unit normal vector at each point on the graph of the vector function

$$R(t) = e^t \mathbf{i} + e^{-t} \mathbf{j} + \sqrt{2}t\mathbf{k}$$

(10 marks)

- (b) Show that $\mathbf{F} = (y^2 z^2 + 3yz 2x)\mathbf{i} + (3xz + 2xy)\mathbf{j} + (3xy 2xz + 2z)\mathbf{k}$ is conservative. Find:
 - (i) Scalar potential.

(6 marks)

(i) Work done by \mathbf{F} in moving a particle from (1,0,1) to (2,1,3).

(4 marks)

(c) Show that $\iint_S F \cdot dS = \frac{3}{8}$, where $F = yz\mathbf{i} - xz\mathbf{j} + xy\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies in the first octant.

(5 marks)

- END OF QUESTIONS -

3

TERBUKA

CONFIDENTIAL

SEMESTER/SESSION : SEM 2 2022/2023 COURSE NAME : ENGINEERING MATHEMATICS

PROGRAMME CODE : BFF

COURSE CODE : BFC 25103

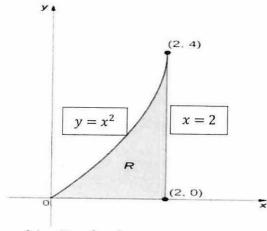


Figure Q3(a): The lamina of density $\rho(x, y) = x + y$ occupying the region R under the curve $y = x^2$

are and the contract of

SEMESTER/SESSION : SEM 2 2022/2023

COURSE NAME : ENGINEERING **MATHEMATICS** PROGRAMME CODE : BFF

COURSE CODE : BFC 25103

Formulae

Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1x} + Be^{m_2x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{ax}(A\cos\beta x + B\sin\beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Undetermined Coefficients

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + \dots + A_1 x + A_0$	$x'(B_nx^n+\cdots+B_1x+B_0)$
Ceax	$x^r(ke^{ax})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(p\cos\beta x + q\sin\beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Variation of Parameters

Wronskian	Parameter	Solution
$W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$	$u_1 = -\int \frac{y_2 f(x)}{W} dx$, $u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_p = u_1 y_1 + u_2 y_2$

SEMESTER/SESSION : SEM 2 2022/2023 COURSE NAME : ENGINEERING MATHEMATICS

PROGRAMME CODE : BFF

COURSE CODE : BFC 25103

Laplace Transforms

	$\mathbf{L}^{\{f(t)\}} = \int_0^\infty$	$f(t)e^{-st}dt = F(s)$	
$f(t) = \mathcal{L}^{-1}{F(s)}$	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}{F(s)}$	$F(s) = \mathcal{L}\{f(t)\}\$
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}
sin <i>at</i>	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)
sinh at	$\frac{a}{s^2 - a^2}$	y(t)	Y(s)
cosh <i>at</i>	$\frac{s}{s^2 - a^2}$	$\dot{y}(t)$	sY(s) - y(0)
$e^{at}f(t)$	F(s-a)	$\ddot{y}(t)$	$s^2Y(s) - sy(0) - \dot{y}(0)$
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$		

And the second

SEMESTER/SESSION : SEM 2 2022/2023

: ENGINEERING

PROGRAMME CODE : BFF

COURSE NAME

MATHEMATICS

COURSE CODE

: BFC 25103

Formulae

Tangent Plane:
$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Local Extreme Value:
$$G(x, y) = f_{xx}(x, y) \times f_{yy}(x, y) - [f_{xy}(x, y)]^2$$

Case	G(a,b)	Result
1	G(a,b) > 0 $f_{xx}(a,b) < 0$	f(x, y) has a local maximum value at (a, b)
2	G(a,b) > 0 $f_{xx}(a,b) > 0$	f(x,y) has a local minimum value at (a,b)
3	G(a,b)<0	f(x,y)has a saddle point at (a,b)
4	G(a,b)=0	inconclusive

Polar coordinate:
$$x = r\cos\theta$$
, $y = r\sin\theta$, $\theta = \tan^{-1}(\frac{y}{x})$ and

$$\iint_{R} f(x,y)dA = \iint_{R} f(r,\theta) r dr d\theta$$

Cylindrical coordinate:
$$x=r\cos\theta$$
, $y=r\sin\theta$, $z=z$, $\iiint_G f(x,y,z)dV=\iiint_G f(r,\theta,z)d\ dz\ dr\ d\theta$

Spherical coordinate:
$$x = \rho \sin \sin \phi \cos \cos \theta$$
, $y = \rho \sin \sin \phi \sin \sin \theta$, $z = \rho \cos \cos \theta$, $x^2 + y^2 + z^2 = \rho^2$, $0 \ll \theta \ll 2\pi$, $0 \ll \phi \ll \pi$ and $\iiint f(x,y,z)dV = \iiint f(\rho,\phi,\theta)\rho^2 \sin \sin \phi \, d\rho d\phi d\theta$

For lamina

Mass,
$$m = \iint_R \delta(x, y) dA$$

Moment of mass: y-axis:
$$M_y = \iint_R x \delta(x, y) dA$$
 x-axis, $M_x = \iint_R y \delta(x, y) dA$ Center of mass, $\left(\underline{x}, \underline{y}\right) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$

Centroid for homogenous lamina:
$$\underline{x} = \frac{1}{area} \iint_R x \, dA$$
 $\underline{y} = \frac{1}{area} \iint_R y \, dA$ Moment inertia:

Y-axis:
$$I_y = \iint_R x^2 \delta(x, y) dA$$
 x-axis: $I_x = \iint_R y^2 \delta(x, y) dA$

Z-axis (or origin):
$$I_z = I_0 = \iint_R (x^2 + y^2) \delta(x, y) dA = I_x + I_y$$

7

SEMESTER/SESSION:

SEM 2 2022/2023

COURSE NAME

ENGINEERING MATHEMATICS PROGRAMME CODE : BFF

COURSE CODE

: BFC 25103

For solid

Mass, $m = \iiint_G \delta(x, y) dV$

yz-plane: $M_{yz} = \iiint_G x \, \delta(x, y, z) \, dV$

xz-plane: $M_{xz} = \iiint_C y \, \delta(x, y, z) \, dV$

xy-plane: $M_{xy} = \iiint_G z \, \delta(x, y, z) \, dV$

Center of gravity, $(\underline{x}, \underline{y}, \underline{z}) = (\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m})$

Moment inertia:

$$I_y = \iiint_G (x^2 + z^2) \, \delta(x, y, z) dV$$

$$I_x = \iiint_G (y^2 + z^2) \, \delta(x, y, z) dV$$

$$I_z = \iiint_G (x^2 + y^2) \, \delta(x, y, z) dV$$

Directional derivative: $D_u f(x, y) = (f_x i + f_y j) \cdot u$

Let F(x, y, z) = Mi + Nj + Pk is vector field, then the divergence of $F = \nabla \cdot F = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$ The curl of

$$F = \nabla \times F = \left| i \, j \, k \, \frac{\partial}{\partial x} \, \frac{\partial}{\partial y} \, \frac{\partial}{\partial z} \, M \, N \, P \, \right| = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) i - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) j + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) k$$

Let C is a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k, t is parameter, then

The unit tangent vector; $T(t) = \frac{r'(t)}{\|r'(t)\|}$

The unit normal vector: $N(t) = \frac{T'(t)}{\|T'(t)\|}$

The binormal vector: $B(t) = T(t) \times N(t)$ The curvature: $K = \frac{T'(t)}{\|r'(t)\|} = \frac{\|r' \times r''(t)\|}{\|r'(t)\|^3}$

The radius of curvature: $\rho = 1/K$

Green Theorem: $\oint_C M(x, y) dx + N(x, y) dy = \iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dA$

Gauss Theorem: $\iint_{\sigma} F \cdot n \, dS = \iiint_{G} \nabla \cdot F \, dV$

Stokes Theorem: $\oint_C F. dr = \iint_{\sigma} (\nabla \times F) \cdot n \, dS$

SEMESTER/SESSION : SEM 2 2022/2023

PROGRAMME CODE : BFF

COURSE NAME : ENGINEERING **MATHEMATICS**

COURSE CODE : BFC 25103

Arc length, If r(t) = x(t)i + y(t)j, $t \in [a, b]$, then the arc length

$$s = \int_{a}^{b} ||r'(t)|| dt = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

If r(t) = x(t)i + y(t)j + z(t)k, $t \in [a, b]$, then the arc length

$$s = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

Trigonometric and Hyperbolic Identities

Trigonometric	Hiperbolic	
$\cos^2 x + \sin^2 x = 1$	$\sinh x = \frac{e^x - e^{-x}}{2}$	
$1 + \tan^2 x = \sec^2 x$	$\cosh x = \frac{e^x + e^{-x}}{2}$	
$\cot^2 x + 1 = \csc^2 x$	$\cosh^2 x - \sinh^2 x = 1$	
$\sin 2x = 2\sin x \cos x$	$1 - \tanh^2 x = \operatorname{sech}^2 x$	
$\cos 2x = \cos^2 x - \sin^2 x$	$\cosh^2 x - 1 = \operatorname{csch}^2 x$	
$\cos 2x = 2\cos^2 x - 1$	$\sinh 2x = 2\sinh x \cosh x$	
$\cos 2x = 1 - 2\sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$	
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\cosh 2x = 2\cosh^2 x - 1$	
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\cosh 2x = 1 + 2\sinh^2 x$	
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$	
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\sinh (x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$	
$2\sin x \cos y = \sin(x+y) + \sin(x-y)$	$\cosh (x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$	