

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2022/2023

COURSE NAME

PHYSICAL CHEMISTRY

COURSE CODE

: BWD 11203

PROGRAMME CODE

BWD

EXAMINATION DATE :

JULY/AUGUST 2023

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS

CONDUCTED VIA

☐ Open book ☐ Closed book

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

. .

BWD 11203

- Q1 A gas (A) in a closed container has a volume of 0.25 L at a temperature of 273 K.
 - (a) Write down the relationship between volume and temperature for ideal gas.

 (4 marks)
 - (b) If the temperature of the gas is then increased to 10 °C, what will be the new volume of the balloon.

(6 marks)

(c) Later, another gas component (B) was added into the same container. Calculate the total pressure. Refer **Table Q1(c)**. (R = 0.08205 L.atm.mol⁻¹.K⁻¹)

Table Q1(c): Details for gas A and B

Gas sample/ Details	Gas A	Gas B
No. of mole, n	0.15	0.05

(10 marks)

Q2 Consider the following reversible reaction.

$$N_2 + 3H_2 \approx 2NH_3$$

(a) State the equilibrium constant for the reversible reaction.

(4 marks)

(b) In a 3.00 L container, 0.0420 mole N_2 , 0.5160 mole H_2 and 0.0357 mole NH_3 are found in equilibrium at 400 °C. Calculate K_c .

(8 marks)

- (c) According to le Chatelier's principle, identify the reaction that occurs when...
 - (i) NH₃ is removed.

(4 marks)

(ii) Volume of the container is reduced.

(4 marks)

- Q3 For a reaction of $H_2O_2(aq) \rightarrow H_2O(g) + \frac{1}{2}O_2(g)$;
 - (a) Write the rate expression in terms of each reactant and product.

(6 marks)

(b) Identify **THREE** (3) potential rate laws for the reaction. For each proposed rate law, determine the overall order.

(6 marks)

TERBUKA

CONFIDENTIAL

BWD 11203

(c) At 20 °C, the half-life for a first-order reaction is 3.92×10^4 s. If the initial concentration of hydrogen peroxide is 0.52 M, determine the concentration after 7 days.

(8 marks)

- For the cell notation, $Al(s) \mid Al^{3+}(aq, 1 M) \parallel Cu^{2+}(aq, 1 M) \mid Cu(s)$, Q4
 - Write which is the anode, the cathode and determine the half-reaction at the (a) anode and the cathode.

(4 marks)

By referring to the standard reduction potential, calculate E_{cell}° and determine the (b) spontaneity.

(6 marks)

Calculate the mass of palladium produced by the reduction of palladium (II) ions (c) during the passage of 3.20 amperes of current through a solution of palladium (II) sulfate for 30 minutes. (Relative atomic mass (Pd) = 106.42 u)

(10 marks)

- END OF QUESTIONS -

APPENDIX A

Standard reduction potential at 1 atm, 1 M, 298 $\rm K$

Half Reaction	Potential E	
Li-(aq) + e> Li(s)	-3.05	
Mg ²⁻ (aq) + 2e> Mg(s)	-2.36	
Al ³⁻ (aq) + 3e> Al(s)	-1.67	
$H_2O(1) + 2e_1> H_2(g) + 2OH_1(aq)$	-0.83	
Zn²-(aq) + 2e> Zn(s)	-0.76	
Fe ²⁻ (aq) + 2e>Fe(s)	-0.44	
Ni ²⁻ (aq) + 2e> Ni(s)	-0.23	
Pb ²⁻ (aq) + 2e> Pb(s)	-0.13	
Fe ³⁻ (aq) + 3e> Fe(s)	-0.036	
2H ⁻ (aq) + 2e> H ₂ (g)	0	
Cu ²⁻ (aq) + 2e> Cu(s)	0.34	
Cu ⁻ (aq) + e> Cu(s)	0.52	
Hg ²⁻ (aq) + 2e> Hg(I)	0.8	
Ag ²⁻ (aq) + 2e> Ag(s)	0.8	
Pt2-(aq) + 2e> Pt(s)	1.2	
O ₂ (g) + 4H+(aq) + 4e> H ₂ O(l)	1.23	
Au ³⁻ (aq) + 3e> Au(s)	1.5	
F:(g) + 2e> 2F-(aq)	2.87	