

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

COURSE NAME

ANALOG ELECTRONICS

COURSE CODE

BEJ10503

PROGRAMME CODE :

BEJ

EXAMINATION DATE :

FEBRUARY 2023

DURATION

: 3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED BOOK.**

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

CONDUCTED VIII CLOSED DOOR

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

BEJ10503

Q1 (a) Explain TWO (2) reasons a pure semiconductor behaves like an insulator (not a conductor) at absolute zero temperature.

(2 marks)

(b) Zener diodes usually operate under reverse biased condition. Explain the operation of a zener diode.

(3 marks)

- (c) The Zener regulator circuit in **Figure Q1(c)** has the following values: $R_L = 0.22 \text{ k}\Omega$, Zener voltage, $V_Z = 8 \text{ V}$ and the maximum power rating of the Zener diode is 400 mW. In order to maintain this regulator circuit with load voltage, V_L at 8 V and not exceed the maximum power rating of the Zener diode; determine the:
 - (i) minimum input voltage, $V_{i min}$.

(4 marks)

(ii) maximum input voltage, $V_{i max}$.

(6 marks)

Q2 (a) Determine the values for R_C, R_B, and R_E for the emitter-stabilized bias circuit in Figure Q2(a) that has the following specifications:

 β = 100, $I_{CQ} = \frac{1}{2}I_{Csat}$, $I_{Csat} = 8$ mA, $V_{CEQ} = 12$ V. Assume $V_E = 0.1 V_{CC}$ and $V_{BE} = 0.7$ V. (10 marks)

- (b) For the circuit in **Figure Q2(b)**, assume $\beta = 200$, $V_{BE} = 0.7 \text{ V}$ and $r_0 = \infty$.
 - (i) Determine the operating currents, I_{BQ} , I_{EQ} and V_{CEQ} .

(6 marks)

(ii) Using the r_e model, draw the AC equivalent circuit with consideration of the additional parameters for this amplifier as follows:

 $Rs = 1 \text{ k}\Omega$, C_B or $C_{in} = 10 \text{ }\mu\text{F}$, C_C or $C_{out} = 10 \text{ }\mu\text{F}$ and $C_E = 100 \text{ }\mu\text{F}$.

(3 marks)

(iii) Hence, determine the input impedance, Zi and output impedance, Zo.

(5 marks)

(iv) Calculate voltage gain, Av and current gain, Ai.

(6 marks)

CONFIDENTIAL

BEJ10503

Q3 Based on the FET amplifier circuit shown in Figure Q3,

(a) name the transistor and its configuration.

(2 marks)

(b) plot the transfer characteristics of the transistor.

(12 marks)

(c) Determine the operating point, V_{GSQ} and I_{DQ} of the amplifier from the graph obtained in Q3(b).

(2 marks)

(d) If the amplifier has an applied load resistance, R_L of $10 \, k\Omega$ and a source resistance, R_{sig} of $1 \, k\Omega$, sketch the AC small-signal equivalent circuit of the FET amplifier circuit.

(3 marks)

(e) Assuming the transistor AC output resistance $ro = \infty$ (infinity), calculate the input impedance, Z_i , output impedance, Z_0 and voltage gain, A_v .

(11 marks)

- Q4 (a) Figure Q4(a) is a BJT amplifier circuit which has an infinite value of AC collector resistance, ro (or rC) with $re=28.48 \Omega$ and Av=-72.91;
 - (i) Determine the high cut-off frequencies, f_{Hi} and f_{Ho} .

(8 marks)

(ii) The internal capacitors influenced the high frequency response. In your opinion, how to minimize the effect of internal capacitors?

(2 marks)

- (b) A class B amplifier with power supplies of VCC = 30 V is used to deliver a 25 V peak signal to a 15 Ω speaker.
 - (i) Sketch a circuit diagram for the amplifier.

(2 marks)

(ii) Determine the input power, P_{in} , output power, P_{out} , and circuit efficiency, η for the amplifier.

(6 marks)

(iii) Analyze the circuit performance in terms of its efficiency as a class B amplifier based on the value obtained in Q4(b)(ii).

(2 mark)

CONFIDENTIAL

BEJ10503

(c) Crossover distortion is seen as a problem arising from a class B push-pull amplifier. Analyse the crossover distortion problem that arises in the class B push-pull amplifier by using an appropriate illustration of V_{in} and V_{out}.

(5 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023 **COURSE NAME**

: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ

COURSE CODE

: BEJ10503

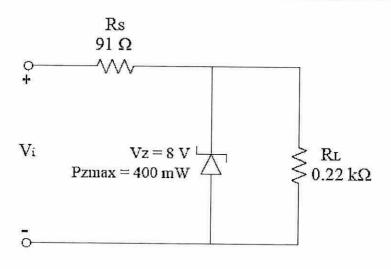


Figure Q1(c)

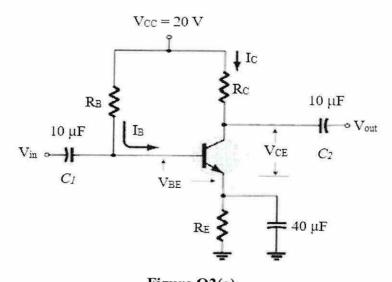


Figure Q2(a)

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ

COURSE CODE

: BEJ10503

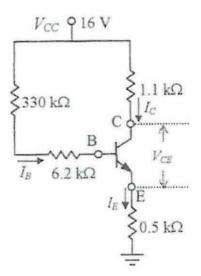


Figure Q2(b)

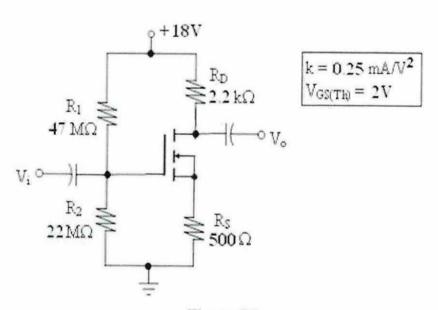
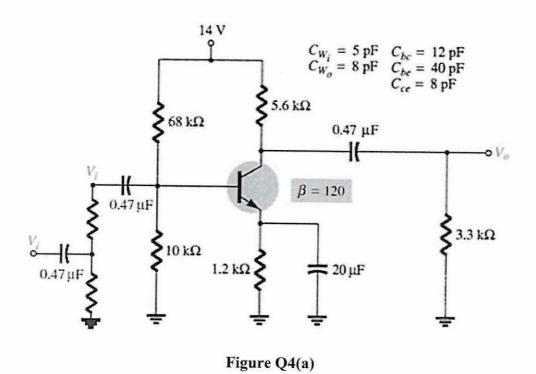


Figure Q3

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023


COURSE NAME

: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ

COURSE CODE

: BEJ10503

TERBUKA