

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

.

COURSE NAME

ENGINEERING STATISTICS /

ENGINEERING MATHEMATICS V

COURSE CODE

BEE32502 / BEE31702

PROGRAMME CODE :

BEJ / BEV

EXAMINATION DATE:

FEBRUARY 2023

DURATION

3 HOURS

INSTRUCTIONS

1. ANSWER ALL QUESTIONS IN

THIS QUESTION PAPER.

2. THIS FINAL EXAMINATION IS CONDUCTED VIA **CLOSED**

BOOK.

3. STUDENTS ARE **PROHIBITED**

TO CONSULT THEIR OWN

MATERIAL OR ANY

EXTERNAL RESOURCES

DURING THE EXAMINATION

CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF EIGHTEEN (18) PAGES

TERBUKA

BEE32502 / BEE31702

PART A: OBJECTIVE QUESTIONS

Q1	What	does the central limit theorem state?	
	(a)	if the sample size increases sampling distribution must approa	ach normal
	(b)	if the sample size decreases then the sample distribution mus normal distribution	t approach
	(c)	if the sample size increases then the sampling distribution much a exponential distribution	pproach an
	(d)	if the sample size decreases then the sampling distribution much a exponential distribution	pproach an
			(1 mark)
Q2	Which	h of the following is a subset of population?	
	(a)	distribution	
	(b)	sample	
	(c)	data	
	(d)	set	
			(1 mark)
Q3	The sa	ampling error is defined as	
	(a)	difference between population and parameter	
	(b)	difference between sample and parameter	
	(c)	difference between population and sample	
	(d)	difference between parameter and sample	
	258. (6.2)	1 constant to the constant to	
			(1 mark)
Q4	Which	Chi Square distribution looks the most like a normal distribution?	
	(a)	A Chi Square distribution with 4 degrees of freedom	
	(b)	A Chi Square distribution with 5 degrees of freedom	
	(c)	A Chi Square distribution with 6 degrees of freedom	
	(d)	A Chi Square distribution with 16 degrees of freedom	
		and	
			(1 mark)
Q5	Which	of the following distributions is continuous?	
	(a)	Binomial Distribution	
	(b)	Hyper-geometric Distribution	
	(c)	F-Distribution	
	(d)	Poisson Distribution	

TERBUKA

(1 mark)

BEE32502 / BEE31702

Q6	An es	stimator is a random variable because it varies from
	(a)	Population to sample
	(b)	Population to population
	(c)	Sample to sample
	(d)	Sample to population
		(1 mark)
Q7	for th	population standard deviation σ is doubled, the width of the confidence interval e population mean, μ (i.e.; the upper limit of the confidence interval – lower of the confidence interval) will be:
	(a)	Doubled
	(b)	Decreased
	(c)	Divided by 2
	(d)	Multiplied by $\sqrt{2}$
		(1 mark)
Q8	A con	fidence interval will be widened if
	(a)	The confidence level is increased, and the sample size is reduced
	(b)	The confidence level is increased, and the sample size is increased
	(c)	The confidence level is decreased, and the sample size is increased
	(d)	The confidence level is decreased, and the sample size is decreased
		(1 mark)
Q9	Which	of the following statements is incorrect?
	(a)	If the population mean and population standard deviation are both known, one can make probability statements about individual x values taken from the population
	(b)	If the population mean and population standard deviation are both known, one can use the central limit theorem and make probability statements about the means of samples taken from the population
	(c)	If the population mean is unknown, one can use sample data as the basis from which to make probability statements about the true (but unknown) value of
	(d)	the population mean When sample data are used for estimating a population mean, sampling error will not be present since the observed sample statistic will not differ from the actual value of the population parameter
		(1 mark)

TERBUKA

BEE32502 / BEE31702

Q10	A 95° If the	% confidence interval for the population mean is calculated to be 75.29 to 81.45. confidence level is reduced to 90%, the confidence interval will
	(a) (b) (c) (d)	become narrower remain the same become wider double in size
		(1 mark)
Q11	biolog samp stand	average growth of a certain variety of pine tree is 10.1 inches in three years. A gist claims that a new variety will have a greater three-year growth. A random le of 25 of the new variety has an average three-year growth of 10.8 inches and a ard deviation of 2.1 inches. The appropriate null and alternate hypotheses to test ologist's claim are
	(a) (b) (c) (d)	H_0 : $\mu = 10.8$ against H_a : $\mu > 10.8$ H_0 : $\mu = 10.8$ against H_a : $\mu \neq 10.8$ H_0 : $\mu = 10.1$ against H_a : $\mu > 10.1$ H_0 : $\mu = 10.1$ against H_a : $\mu \neq 10.1$
		(1 mark)
Q12	Test o	of hypothesis H_0 : μ = 50 against H_1 : μ > 50 leads to
	(a) (b) (c) (d)	Left-tailed test Right-tailed test Two-tailed test Non of the mentioned
		(1 mark)
Q13	The fo	ollowing are percentages of fat found in 5 samples of each of two brands of fruit t:
		A: 5.7, 4.5, 6.2, 6.3, 7.3 B: 6.3, 5.7, 5.9, 6.4, 5.1
	Which averag	of the following procedures is appropriate to test the hypothesis of equal ge fat content in the two types of fruit yogurt?
	(a) (b) (c) (d)	Paired t-test with 4 degrees of freedom Paired t-test with 5 degrees of freedom Two sample t-test with 8 degrees of freedom Two sample t-test with 9 degrees of freedom

(1 mark)

BEE32502 / BEE31702

Q14	Malay	dvertising agency wants to test the hypothesis that the proportion of ysia who read a Sunday Newspaper is 25 percent. The null hypothesis ortion reading the Sunday Newspaper is	adults in is that the
	(a) (b)	Equal to 25% Less than 25 %	
	(d)	More than 25 % Different from 25%	
			(1 mark)
Q15	Giver	$\mu_0=130, \overline{X}=150, \sigma=25 ext{and} n=4; ext{what test statistics is appropriate}$	2?
	(a)	F	
	(b) (c)	$egin{array}{c} t \ \chi^2 \ Z \end{array}$	
	(d)	Z	
			(1 mark)
Q16	A reg	ression analysis is inappropriate when	
	(a) (b)	there is heteroscedasticity in the scatter plot. the pattern of data points forms a reasonably straight line.	
	(c) (d)	you have two variables that are measured on an interval or ratio scale you want to make predictions for one variable based on informat another variable.	
			(1 mark)
Q17	If the	slope of the regression equation $Y=b_0+b_1X$ is positive, then	*
	(a)	As x increases y decreases	
	(b) (c)	As x increases so does y As x decreases y remain	
	(d)	As x decreases y increases	
			(1 mark)
Q18	If the while	regression equation is equal to $Y = 12.3 - 45.6X$, then 12.3 is the -45.6 is the $_$ of the regression line.	
	(a)	Intercept, slope	
	(b) (c)	Slope, intercept Radius, intercept	
	(d)	Slope, regression coefficient	
			(1 mark)

TERBUKA

BEE32502 / BEE31702

Q19 If the correlation coefficient is a positive value, then the slope of the regression line

- (a) must also be positive
- (b) can be either negative or positive
- (c) can be zero
- (d) cannot be zero

(1 mark)

Q20 Regression analysis was applied to the return rates of sparrowhawk colonies. Regression analysis was used to study the relationship between return rate (x: % of birds that return to the colony in a given year) and immigration rate (y: % of new adults that join the colony per year). The following regression equation was obtained.

$$y = 31.9 - 0.34x$$

Based on the above estimated regression equation, if the return rate were to decrease by 10% the rate of immigration to the colony would ______.

- (a) increase by 34%
- (b) increase by 3.4%
- (c) decrease by 0.34%
- (d) decrease by 3.4%

(1 mark)

PART B: SUBJECTIVE QUESTIONS

Q21	(a)	tire l with	re manufacturer reported the failure rate of tire quality and measured the lifetime. The test of selected tires mean lifetime is normally distributed a mean of 60,000 miles and a standard deviation of 3500 miles. For a som sample of 30 tires,
		(i)	Identify the distribution's mean, standard deviation and skewness. Justify your answer. (2 marks)

(ii) Find the probability that if you buy one such tire, it will last only 57,000 or fewer miles.

(b)

b)	mm wher	lindrical hole is drilled in a block in which the mean hole diameter is 9.70 and the variance is 0.35 mm. A cylindrical piston is placed in the hole the mean diameter of the piston is 8.30 mm and the variance is 0.40 Assume that both diameters are normally distributed.
	(i)	Find the probability that the piston will fit inside the hole with at least 0.10 mm clearance.
		(6 marks)
	(ii)	Find the percentage of randomly selected piston and a block of hole will not fit together. (5 marks)
	(iii)	If it is possible to adjust the mean hole diameter, determine the diameter value should be adjusted so that the clearance will be between 0.05 and 0.09 mm.
		(3 marks)
		(p. x 10 = 1 = 1

Q22	(a)	IC de	engineer made 8 independent melting point measurements of siliconesign Assume that the obtained sample mean is 3410.14°C and sand deviation is 1.018.	for
		(i)	Find and interpret a 95% confidence for the mean melting point of silicon. (6 ma	
		(ii)	If the eight measurements were 3409.76, 3409.80, 3410.66, 3409.3409.76, 3409.77, 3409.80 and 3409.78, would the confider intervals in Q22(a)(i) be valid? Justify your answer. (3 mar	nce

TERBUKA ,

(b) The packaging time for a machine is known to be approximately normally distributed. A random sample of 8 packages is selected similarly from old and new machine. The sample from old machine gave an average packaging time of 42.14s with a sample standard deviation of 0.683. While the new machine gave an average packaging time of 43.23s with a sample standard deviation of 0.750.
 (i) Construct a 95% confidence interval for the true variance of both types

(i) Construct a 95% confidence interval for the true variance of both types of machines.

(6 marks)

(ii) Based on the confidence interval as in **Q22(b)(i)**, evaluate is it reasonable to assume that the two populations sample have equal variances? Test the two-population variance at 0.05 level of significance and interpret your result.

(5 marks)

An experiment on the effect of fertilizer usage on jackfruit production has been conducted by a fertilizer company. The mean jackfruit weight harvested in a plantation area has a normal distribution with the mean weight is 23 kilograms with a standard deviation of 9 kilograms per fruit. The fertilizer company claims that their product can give heavier jackfruit production if using their new fertilizer product. A sample of 25 jackfruit was selected at random and the mean weight of the jackfruit weight is 19 kilograms per fruit. Analyze the fertilizer company's claim at 1% significant level.

ain the reason to chose this distribution as solution to Q23(a).	
	(1
late the critical value and test statistic. Write what is the rejection rule, decision and its reason to accept or reject H_0 .	ction r

toot etc	tistic. Label the	on graph for the e "Reject the $H_{ m C}$	" and "Do not	reject H_0 " area	s.
test ste				, ,	
test sta					
lest sta					
lest ste					
lest ste					
test sta					
est sta					
test sta					
test sta					
test sta					
test sta					
test sta					
		for the hypothes			
		for the hypothes:			(2 п
		for the hypothes			(2 п
		or the hypothes:			(2 m
		for the hypothes			(2 m
		For the hypothes			(2 m
		for the hypothes			(2 m
		for the hypothes			(2 n

BEE32502 / BEE31702

BEE32502 / BEE31702

Q24 The number of hours spent per week watching TV, y, and the number of years of education, x, were recorded for 10 randomly selected individuals. The results are given in **Table Q24**.

Table Q24

Number of years of education, x	Number of hours spent per week watching TV, y
12	10
14	9
11	15
16	8
16	5
18	4
12	20
20	4
10	6
12	15

Given
$$\sum x = 141$$
, $\sum y = 106$, $\sum x^2 = 2085 \sum y = 1408$, $\sum xy = 1351$

(a)	Find the	least-squares	line	for these data	

(8 marks)

(4 ma
(3 mar
(3 mar

e)	Based on answer Q24(d) , interpret the value of linear correlation coefficient. (2 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEM. I / 2022/2023

COURSE NAME

: ENGINEERING

STATISTICS /

MATHEMATICS V

ENGINEERING

PROGRAMME CODE: BEJ/BEV

COURSE CODE

: BEE32502 /

BEE31702

Formula

Random Variable:

$$\sum_{i=-\infty}^{\infty} P(x_i) = 1 \qquad E(X) = \sum_{\forall x} x \cdot P(x) \qquad E(X^2) = \sum_{\forall x} x^2 \cdot P(x)$$

$$\int_{-\infty}^{\infty}f\left(x
ight)dx=1 \hspace{0.5cm} E\left(X
ight)=\int_{-\infty}^{\infty}x\cdot P\left(x
ight)dx \hspace{0.5cm} E\left(X^{2}
ight)=\int_{-\infty}^{\infty}x^{2}\cdot P\left(x
ight)dx$$

$$Var\left(X\right) = E\left(X^{2}\right) - \left[E\left(X\right)\right]^{2}$$

Special Probability Distributions:

$$P(x=r) = {}^{n} C_{r} \cdot p^{r} \cdot q^{n-r}, r = 0, 1, 2, ..., n$$
 $X \sim B(n, p)$

$$P\left(X=r\right)=\frac{e^{-\mu}\cdot\mu^{r}}{r!},\ r=0,\ 1,\ 2,\ ...,\ \infty \qquad \qquad X\sim P_{o}\left(\mu\right)$$

$$Z = rac{X - \mu}{\sigma}$$
 $Z \sim N(0, 1)$ $X \sim N(\mu, \sigma^2)$

Sampling Distributions:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N\left(0, 1\right)$ $T = \frac{\overline{x} - \mu}{s/\sqrt{n}}$

$$\overline{X}_1 - \overline{X}_2 \sim N\left(\mu_1 - \mu_2, \ \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

Estimations:

$$egin{split} n &= \left(rac{z_{a/2}\cdot\sigma}{E}
ight)^2 \ (\overline{x}_1-\overline{x}_2) - z_{lpha/2} \left(\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}
ight) < \mu_1-\mu_2 < (\overline{x}_1-\overline{x}_2) + z_{lpha/2} \left(\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}
ight) \end{split}$$

$$(\overline{x}_1 - \overline{x}_2) - z_{lpha/2} \left(\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}
ight) < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + z_{lpha/2} \left(\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}
ight)$$

FINAL EXAMINATION

SEMESTER/SESSION: SEM. I / 2022/2023

COURSE NAME

: ENGINEERING

STATISTICS / ENGINEERING

MATHEMATICS V

PROGRAMME CODE: BEJ/ BEV

COURSE CODE : BEE32502 /

BEE31702

$$(\overline{x}_1 - \overline{x}_2) - t_{a/2,v} \cdot s_p^2 \left(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{a/2,v} \cdot s_p^2 \left(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$$

where Pooled estimate of variance is $S_P^2=rac{(n_1-1)s_1^2+(n^2-1)s_1^2}{n_1+n_2-2}$ with $v=n_1+n_2-2$

$$(\overline{x}_1 - \overline{x}_2) - t_{a/2,v} \left(\sqrt{\frac{1}{n} \left(s_1^2 + s_2^2 \right)} \right) < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{a/2,v} \left(\sqrt{\frac{1}{n} \left(s_1^2 + s_2^2 \right)} \right)$$
 with $v = 2(n-1)$

$$\begin{split} \left(\overline{x}_1 - \overline{x}_2\right) - t_{a/2,v} \left(\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right) < \mu_1 - \mu_2 < \left(\overline{x}_1 - \overline{x}_2\right) + t_{a/2,v} \left(\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right) \\ \text{with } v &= \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \end{split}$$

$$\frac{(n-1)s^2}{\chi^2_{a/2,\ v}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-a/2,\ v}}$$
 with $v = n-1$

$$\frac{s_1^2}{s_2^2} \left(\frac{1}{F_{df_1,df_2,\frac{a}{2}}} \right) < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \left(F_{df_1,df_2,\frac{a}{2}} \right) \text{ with } v_1 = n_1 - 1, \ \ and \ \ v_2 = n_2 - 1$$

Hypothesis Testing:

$$Z_{test} = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad T = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ with } v = n_1 + n_2 - 2$$

$$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad T = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n}(s_1^2 + s_2^2)}}$$

$$T = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

BEE32502 / BEE31702

FINAL EXAMINATION

SEMESTER/SESSION: SEM. I / 2022/2023

COURSE NAME

: ENGINEERING STATISTICS /

ENGINEERING MATHEMATICS V PROGRAMME CODE: BEJ/BEV

COURSE CODE : BEE32502 /

BEE31702

Simple Linear Regression:

$$S_{xy} = \sum_{i=1}^n x_i y_i - rac{1}{n} \left(\sum_{i=1}^n x_i
ight) \left(\sum_{i=1}^n y_i
ight) \quad S_{xx} = \sum_{i=1}^n x_i^2 - rac{1}{n} \left(\sum_{i=1}^n x_i
ight)^2$$

$$egin{aligned} S_{yy} = \sum_{i=1}^n y_i^2 - rac{1}{n} \left(\sum_{i=1}^n y_i
ight)^2 & \overline{x} = rac{1}{n} \sum_{i=1}^n x_i & \overline{y} = rac{1}{n} \sum_{i=1}^n y_i \end{aligned}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$eta_1 = rac{S_{xy}}{S_{xx}} \qquad eta_0 = \overline{y} - eta_1 \overline{x} \qquad \qquad y = eta_0 + eta_1 x$$

$$y = \beta_0 + \beta_1 x$$

$$R^2 rac{S_{yy} - SSE}{S_{yy}} = 1 - rac{SSE}{S_{yy}} \qquad \quad r = rac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$$

$$SSE = S_{yy} - \beta_1 S_{xy}$$

$$MSE = rac{SSE}{n-2}$$

$$T = \frac{\beta_1 - \beta_c}{\sqrt{\frac{MSE}{S_{xx}}}} \sim t_{n-2}$$

$$T = rac{eta_0 - eta_c}{\sqrt{MSE\left(rac{1}{n} + rac{\overline{x}^2}{S_{xx}}
ight)}} \sim t_{n-2}$$