

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2022/2023**

COURSE NAME

ELECTRIC CIRCUIT 1

COURSE CODE

: BEV10303

PROGRAMME CODE : BEV

:

.

EXAMINATION DATE: FEBRUARY 2023

DURATION

3 HOURS :

INSTRUCTION

1. ANSWER ALL QUESTIONS

2.THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSE BOOK

3.STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE **EXAMINATION** CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

BEV10303

ŲI	(a)	(a) Consider the charge, $q(t)$ entering a certain electric element given in Figure Q1(a).		
		(i)	Find the current values at $t = 1$ ms, $t = 6$ ms and $t = 10$ ms.	
		(ii)	Sketch the corresponding current for $t = 0$ ms until $t = 12$ ms.	(6 marks)
	(b)	(i)	Explain the concept of power absorbed and power delivered by circuit e consideration of the passive sign convention using an appropriate equation.	elements with
		(ii)	Find V_o and the power absorbed by each element in the circuit of Figur	
				(13 marks)
Q2	(a) Discuss relationship between an electric potential and power. (5 ma			
	(b) The circuit shown in Figure Q2(b) is operated using two voltage supplies. For this circuit			this circuit;
		(i) (ii)	Determine the node voltages, V_A and V_B . Calculate the power dissipated in each resistor.	(12 marks) (8 marks)
Q3	(a) For the circuit shown in Figure Q3(a),			
	Ü	(i)	Find the Thevenin equivalent circuit between terminals A and B.	(17 marks)
	()	(ii)	Determine the maximum power that can be delivered to R.	(2 marks)

TERBUKA

CONFIDENTIAL

BEV10303

(b) In an electrical circuit, there is a relationship between the maximum power transfer theorem and its efficiency. Predict the efficiency of a circuit if:

(i)
$$R_{load} = R_{source}$$

(2 marks)

(ii)
$$R_{load} = \infty \Omega$$
. or $R_{source} = 0 \Omega$

(2 marks)

(iii)
$$R_{load} = 0 \Omega$$

(2 marks)

Q4 (a) For the circuit shown in Figure Q4(a), determine the node voltages V_a , V_b , V_c , V_d using the voltage divider rule and find the current i_1 .

(16 marks)

(b) For the circuit shown in **Figure Q4(b)**, produce its equivalent Norton equivalent circuit between terminal a and b by obtaining the Norton resistance (R_N) and Norton current (I_N) .

(9 marks)

TERBUKA

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER 1/SESSION 20222023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE: BEV COURSE CODE: BEV10303

Figure Q1(a)

Figure Q1(b)

Figure Q2(b)

FINAL EXAMINATION

SEMESTER/SESSION : SEMESTER 1/SESSION 20222023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE : BEV COURSE CODE : BEV10303

Figure Q3(a)

Figure Q4(a)

FINAL EXAMINATION

SEMESTER/SESSION : SEMESTER 1/SESSION 20222023

COURSE NAME

: ELECTRIC CIRCUIT 1

PROGRAMME CODE: BEV COURSE CODE: BEV10303

Figure Q4(b)